ON NONVANISHING OF L-FUNCTIONS

BY FREYDOON SHAHIDI¹

The nonvanishing of Hecke L-functions at the line $\operatorname{Re}(s) = 1$ has proved to be useful in the theory of uniform distribution of primes. One of the generalizations of this fact is due to H. Jacquet and J. A. Shalika [4], who proved the nonvanishing of the L-functions considered in [2]. The following theorem generalizes this result to the L-functions attached to the pairs of cusp forms on $GL_n \times GL_m$ (cf. [3]). It appears to have an application in the classification of automorphic forms on GL_n (communications with H. Jacquet and J. A. Shalika).

Let F be a number field and denote by A its ring of adeles. Fix two positive integers m and n. Let π and π' be two cuspidal representations of $GL_n(A)$ and $GL_m(A)$. Fix a complex number s. Write $\pi = \bigotimes_v \pi_v$ and $\pi' = \bigotimes_v \pi'_v$, where π_v and π'_v denote the vth components of π and π' at each place v of F, respectively. Let S be the finite set of all ramified places, including the infinite ones. For every finite place v, H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika have defined (cf. [3]) a local L-function $L(s, \pi_v \times \pi'_v)$. Let

$$L_{\mathcal{S}}(s, \pi \times \pi') = \prod_{v \notin \mathcal{S}} L(s, \pi_v \times \pi'_v)$$

Put $i = (-1)^{1/2}$. Then we have

THEOREM. $L_{S}(1 + it, \pi \times \pi') \neq 0$ for $\forall t \in \mathbf{R}$.

OUTLINE OF THE PROOF. The proof follows the general principle of applying Eisenstein series to L-functions which is due to R. P. Langlands [5] (same as in [4]). Put $G = GL_{n+m}$ and $M = GL_n \times GL_m$. Consider M as a Levi factor of a maximal standard parabolic subgroup of G. Choose φ in the space of $\pi = \tilde{\pi} \otimes \pi'$, where $\tilde{\pi}$ denotes the contragredient of π . Extend φ to $\tilde{\varphi}$, a function on $G(\mathbf{A})$, as in [7]. Put

$$\Phi_{s}(g) = \delta_{p}^{s-1/2}(p)\widetilde{\varphi}(g),$$

where P = MN, g = kp, $p \in P(\mathbf{A})$, and $k \in K$. Here $K = \prod_{v} K_{v}$ is a maximal compact subgroup of $G(\mathbf{A})$ such that $K_{v} = G(O_{v})$ for every finite v. Now set (cf. [6], [7])

© 1980 American Mathematical Society 0002-9904/80/0000-0209/\$01.75

Received by the editors November 7, 1979.

AMS (MOS) subject classifications (1970). Primary 12A70, 12B30; Secondary 10D40. ¹Partially supported by NSF grant MCS 79-02019.