THE LANGLANDS CONJECTURE FOR Gl₂ OF A LOCAL FIELD BY PHILIP KUTZKO¹

Let F be a p-field and let W(F) be the absolute Weil group of G. Let $A_n(F)$ be the set of (equivalence classes of) continuous semisimple n-dimensional complex representations of W(F) and let $A(Gl_n(F))$ be the set of (equivalence classes of) irreducible admissible representations of $Gl_n(F)$. By local classfield theory there is a natural bijection between the sets $A_1(F)$ and $A(Gl_1(F))$, this latter set being just the set of quasi-characters of the multiplicative group F^{\times} of F; we observe the convention of using this bijection to identify one-dimensional representations of W(F) with quasi-characters of F^{\times} .

It is a conjecture of Langlands [JL] that there should exist a bijection $\sigma \rightarrow \pi(\sigma)$ between $A_2(F)$ and the subset of nonspecial representations in $A(Gl_2(F))$, this bijection having the following properties.

1. For χ in $A_1(F)$, $\pi(\sigma \otimes \chi) = \pi(\sigma) \otimes \chi \circ det$.

2. The one-dimensional representation det σ should (under our convention) be the central character of $\pi(\sigma)$.

3. $L(\sigma) = L(\pi(\sigma)); \epsilon(\sigma) = \epsilon(\pi(\sigma))$ where L, ϵ are the *local factors* associated to σ and $\pi(\sigma)$ [JL] with respect to some fixed character of F^+ .

In case the representation σ in $A_2(F)$ is reducible or imprimitive (i.e., induced from a proper subgroup of W(F)) the existence of $\pi(\sigma)$ is demonstrated in [JL]; in particular, this verifies the conjecture in case $p \neq 2$.

In case p = 2, Yoshida [Y] and Ree [R] have shown the existence of $\pi(\sigma)$ for certain primitive representations σ and Tunnell [T] has shown that the map $\sigma \rightarrow \pi(\sigma)$ is a bijection given that the existence of $\pi(\sigma)$ has already been established for all σ in $A_2(F)$, thus establishing the validity of the conjecture for $F = \mathbf{Q}_2$ as well as for fields F of residual characteristic two which contain the cube roots of unity.

We have recently verified the existence of $\pi(\sigma)$ for any primitive representation σ of $A_2(F)$ and we have shown that the map $\sigma \longrightarrow \pi(\sigma)$ is indeed a bijection with the properties described above. We give here a sketch of our methods; a more detailed description of our results will appear elsewhere.

1. As above, let F be a p-field, p = 2 and let σ be a primitive two-dimensional representation of W(F). Then [W] there exists a unique extension $K = K(\sigma)$

© 1980 American Mathematical Society 0002-9904/80/0000-0207/\$02.00

Received by the editors September 24, 1979.

AMS (MOS) subject classifications (1970). Primary 12B25, 20G05; Secondary 22E50, 12B15.

¹Supported in part by NSF Grant #MP575 07481.