RESEARCH ANNOUNCEMENTS

PROJECTIONS OF C^{∞} AUTOMORPHIC FORMS BY JACOB STURM¹

The purpose of this paper is to exhibit an explicit formula which describes the projection operator from the space of C^{∞} automorphic forms to the subspace of holomorphic cusp forms, and to apply it to the zeta functions of Rankin type.

Fix a number k > 0 such that $2k \in \mathbb{Z}$. Let N be a positive integer such that $N \equiv 0 \mod(4)$ if $k \notin \mathbb{Z}$, and let $\chi: (\mathbb{Z}/N\mathbb{Z}) \longrightarrow \mathbb{C}$ be a Dirichlet character modulo N. Define

$$\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(Z) | c \equiv 0 \mod(N) \}$$

and $\mathfrak{D} = \{z = x + iy \in \mathbb{C} | y > 0\}$. For $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(Z)$ and $z \in \mathfrak{D}$, we put $\gamma(z) = (az + b)(cz + d)^{-1}$. For $b \ge 0$, denote by $\mathfrak{S}(k, N, \chi, b)$ the set of functions F satisfying

(1) F is a C^{∞} function from \mathfrak{H} to \mathbf{C} ,

(2)
$$F(\gamma(z)) = \chi(d)j(k, \gamma, z)F(z)$$
 for all $\gamma \in \Gamma_0(N)$ where

$$j(k, \gamma, z) = \begin{cases} (cz+d)^k & \text{if } k \in Z, \\ \left(\frac{c}{d}\right) \left\{ \left(\frac{-1}{d}\right) (cz+d) \right\}^k & \text{if } k \notin Z, \end{cases}$$

where (c/d) is the Legendre symbol (see Shimura [1] for a more complete explanation of this automorphy factor),

(3) $|F(z)| < C(y^a + y^{-b})$ for some positive real numbers C and a.

Let $G(k, N, \chi)$ be the set of all holomorphic modular forms satisfying condition (2) and let $S(k, N, \chi)$ be the subspace of $G(k, N, \chi)$ consisting of cusp forms.

Let $f \in S(k, N, \chi)$ and $F \in \mathfrak{S}(k, N, \chi, b)$. The Petersson inner product of f with F is defined as follows.

$$\langle f, F \rangle = m(N)^{-1} \int_{\Gamma_0(N) \setminus \mathfrak{P}} \overline{f(z)} F(z) y^{k-2} \, dx dy$$

© 1980 American Mathematical Society 0002-9904/80/0000-0202/\$02.25

Received by the editors September 24, 1979.

AMS (MOS) subject classifications (1970). Primary 10D15, 10H10; Secondary 30A31. ¹Partially supported by NSF Grant MCS77-0660.