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SCATTERING THEORY FOR AUTOMORPHIC FUNCTIONS 

BY PETER D. LAX AND RALPH S. PHILLIPS1 

ABSTRACT. This paper is an expository account of our 1976 monograph [6] 
on Scattering theory for automorphic functions. Several improvements have 
been incorporated: a more direct proof of the meromorphic character of the 
Eisenstein series, an explicit formula for the translation representations and 
a simpler derivation of the spectral representations. Our hyperbolic ap­
proach to the Selberg trace formula is also included. 

1. Introduction. In 1972 Faddeev and Pavlov [2] discovered a revealing 
connection between the harmonic analysis of functions automorphic with 
respect to a discrete subgroup of SL(2, R) and the Lax-Phillips scattering 
theory as applied to the non-Euclidean wave equation. Their work is based on 
the spectral theory for the Laplace-Beltrami operator previously developed by 
Faddeev [1] using elliptic arguments. In our 1976 monograph [6] we redid the 
Faddeev-Pavlov paper entirely within the framework of our theory, basing 
our development on the non-Euclidean wave equation. We obtained new 
treatments for (i) the spectral theory of the Laplace-Beltrami operator over 
noncompact domains of finite area; (ii) the meromorphic character of the 
Eisenstein series over the whole complex plane; and (iii) a new form of the 
Selberg trace formula. 

In this paper we sketch a revised version of our monograph including a 
more direct proof of the meromorphic character of the Eisenstein series, an 
explicit formula for the translation representations and a simpler derivation 
of the spectral representations. 

The harmonic analysis of automorphic functions has been extensively 
studied; references to the pertinent parts of this theory are contained in our 
monograph. We recall that the Poincafe plane II, that is the upper half plane 

w « x + fy9 y > 0, (1.1) 

serves as a model for a non-Euclidean geometry in which the motions are 
given by the group G of fractional linear transformations: 

w-> — j (1.2) 
cw + a v ' 

where a, b, c, d are real and 

ad- bc~ l; (1.3) 
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