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Locally solid Riesz spaces, by Charalambos D. Aliprantis and Owen 
Burkinshaw, Academic Press, New York, 1978, xii + 198 pp. 

Vector lattices, also called Riesz spaces, have been objects of mathematical 
interest at least since F. Riesz's pioneering paper [34] at the International 
Mathematical Congress held at Bologna in 1928. Since then many others have 
developed the subject. Some of the more important contributions to the 
theory through 1950 were made by the following authors. H. Freudenthal 
[14], S. W. P. Steen [37], L. V. Kantorovich [19], M. H. Stone [38], H. Nakano 
[26], [27], [28], [29], [30], [31], [32], F. Maeda and T. Ogasawara [25], [33], K. 
Yosida [40], [41], [42], H. F. Bohnenblust [9], S. Kakutani [17], [18]. 

In the next fifteen years vector lattices were not given much attention. 
Some important things were done. A paper of I. Amemiya [1] gave many new 
advances in the algebraic theory, some of which are still being rediscovered. 
W. A. J. Luxemburg and A. C. Zaanen were also very active at this time with 
a succession of important papers [22], [23]. 


