RESEARCH ANNOUNCEMENTS

ON THE DIFFERENCE BETWEEN CONSECUTIVE PRIMES

BY D. R. HEATH-BROWN AND H. IWANIEC

It was shown by Huxley [1] that

$$\pi(x) - \pi(x - y) \sim \frac{y}{\log x} \qquad (x^{\vartheta} \leq y \leq \frac{1}{2}x), \tag{1}$$

for any constant $\vartheta > 7/12$. It follows that

$$p_{n+1} - p_n \ll p_n^{\vartheta} \tag{2}$$

for $\vartheta > 7/12$, where p_n is the *n*th prime number. At present the asymptotic formula (1) is not known for any $\vartheta \le 7/12$. However Iwaniec and Jutila [2] have recently shown that, if one asks only for

$$\pi(x) - \pi(x - y) \gg \frac{y}{\log x} \quad (x^{\vartheta} \le y \le \frac{1}{2}x), \tag{3}$$

then $\vartheta \ge 13/23$ is admissible. It follows that (2) holds with $\vartheta = 13/23$. Here 7/12 = 0.5833..., while 13/23 = 0.5652... Moreover they indicated that the condition $\vartheta \ge 13/23$ could be relaxed to $\vartheta > 5/9 = 0.5555...$, by an elaboration of the argument. The constant 5/9 was the limit of their method.

We can now extend the range of validity of (2) and (3) as follows.

THEOREM. For any $\vartheta > 11/20$ and $x \ge x(\vartheta)$ we have

$$\pi(x) - \pi(x - y) > \frac{1}{212} \frac{y}{\log x}$$

in the range $x^{\vartheta} \leq y \leq \frac{1}{2}x$. Thus

$$p_{n+1} - p_n <\!\!< p_n^\vartheta.$$

Note that 11/20 = 0.5500... This constant is the limit of the present method, since $\vartheta > 11/20$ is required in the lemma quoted below.

The proof of our theorem, like that given by Iwaniec and Jutila, uses a combination of the linear sieve and certain weighted zero-density estimates for

© 1979 American Mathematical Society 0002-9904/79/0000-0402/\$01.75

Received by the editors April 2, 1979.

AMS (MOS) subject classifications (1970). Primary 10H15; Secondary 10H30.