HOMOLOGY STABILITY OF $G L_{n}$ OF A DEDEKIND DOMAIN ${ }^{1}$

BY RUTH M. CHARNEY

The purpose of this paper is to prove that for a Dedekind domain Λ, the homomorphisms

$$
H_{i}\left(G L_{n}(\Lambda) ; \mathbf{Z}\right) \longrightarrow H_{i}\left(G L_{n+1}(\Lambda) ; \mathbf{Z}\right)
$$

are isomorphisms for n sufficiently large. This problem has been of particular interest to K-theorists since $K_{i}(\Lambda)=\Pi_{i}\left(B G L^{+}(\Lambda)\right)$ where $B G L^{+}(\Lambda)$ is a topological space with the property that $H_{*}\left(B G L^{+}(\Lambda)\right) \cong H_{*}(G L(\Lambda)) \cong \lim H_{*}\left(G L_{n}(\Lambda)\right)$. In particular, if Λ is a ring of algebraic integers in a number field, then the groups $G L_{n}(\Lambda)$ are algebraic groups, and the stability theorem allows us to apply the well-developed theory of algebraic groups toward computations of K. groups. For example, Borel-Serre [2] show that for these rings, $G L_{n}(\Lambda)$ has finitely generated homology. Stability then implies that $H_{i}(G l(\Lambda))$ and hence $K_{i}(\Lambda)$ is finitely generated, thus giving a new proof of a theorem of Quillen [5]. In addition, for $\Lambda=\mathbf{Z}$, a good deal is known about p-torsion in $G L_{n}(\mathbf{Z})$. It is conjectured that this will give p-torsion information about $H_{*}\left(G L_{n}(\mathrm{Z})\right)$ and hence, via the results of this paper, about $K_{i}(\mathrm{Z})$. (At the moment, the connection between torsion in a group and torsion in the homology of the group is not entirely understood, but considerable progress in this direction has been made by K. S. Brown [4] and C. Soulé [8].)

The exact statements of the main theorems are as follows:

Theorem 1. For V, W finitely generated projective modules over a Dedekind domain,
(i) $H_{k}(\operatorname{Aut}(W \oplus V), \operatorname{Aut}(W) ; \mathbf{Z})=0$ for rk $W \geqslant 4 k+1$,
(ii) $H_{k}\left(\operatorname{Aut}(W \oplus V), \operatorname{Aut}(W) ; \mathbf{Z}\left[\frac{1}{2}\right]\right)=0$ for rk $W \geqslant 3 k+1$.

Theorem 2. For Λ a PID, $G_{n}=G L_{n}(\Lambda)$ or $S L_{n}(\Lambda)$
(i) $H_{k}\left(G_{n+1}(\Lambda), G_{n}(\Lambda) ; \mathbf{Z}\right)=0$ for $n \geqslant 3 k$,
(ii) $H_{k}\left(G_{n+1}(\Lambda), G_{n}(\Lambda) ; \mathbf{Z}[1 / 2]\right)=0$ for $n \geqslant 2 k$.

Received by the editors October 2, 1978.
AMS (MOS) subject classifications (1970). Primary 18H10; Secondary 18 F 25.
1 This research was supported in part by NSF grant MCS 77-04242.

