HOMOLOGY STABILITY OF GL, OF A DEDEKIND DOMAIN1

BY RUTH M. CHARNEY

The purpose of this paper is to prove that for a Dedekind domain Λ , the homomorphisms

$$H_i(GL_n(\Lambda); \mathbb{Z}) \longrightarrow H_i(GL_{n+1}(\Lambda); \mathbb{Z})$$

are isomorphisms for n sufficiently large. This problem has been of particular interest to K-theorists since $K_i(\Lambda) = \Pi_i(BGL^+(\Lambda))$ where $BGL^+(\Lambda)$ is a topological space with the property that $H_*(BGL^+(\Lambda)) \cong H_*(GL(\Lambda)) \cong \lim_{\longrightarrow} H_*(GL_n(\Lambda))$. In particular, if Λ is a ring of algebraic integers in a number field, then the groups $GL_n(\Lambda)$ are algebraic groups, and the stability theorem allows us to apply the well-developed theory of algebraic groups toward computations of K-groups. For example, Borel-Serre [2] show that for these rings, $GL_n(\Lambda)$ has finitely generated homology. Stability then implies that $H_i(Gl(\Lambda))$ and hence $K_i(\Lambda)$ is finitely generated, thus giving a new proof of a theorem of Quillen [5]. In addition, for $\Lambda = \mathbb{Z}$, a good deal is known about p-torsion in $GL_n(\mathbb{Z})$. It is conjectured that this will give p-torsion information about $H_*(GL_n(\mathbb{Z}))$ and hence, via the results of this paper, about $K_i(\mathbb{Z})$. (At the moment, the connection between torsion in a group and torsion in the homology of the group is not entirely understood, but considerable progress in this direction has been made by K. S. Brown [4] and C. Soulé [8].)

The exact statements of the main theorems are as follows:

THEOREM 1. For V, W finitely generated projective modules over a Dedekind domain,

- (i) $H_k(\text{Aut}(W \oplus V), \text{Aut}(W); \mathbf{Z}) = 0$ for $\text{rk } W \ge 4k + 1$,
- (ii) $H_k(\operatorname{Aut}(W \oplus V), \operatorname{Aut}(W); \mathbf{Z}[\frac{1}{2}]) = 0$ for rk $W \ge 3k + 1$.

Theorem 2. For Λ a PID, $G_n = GL_n(\Lambda)$ or $SL_n(\Lambda)$

- (i) $H_k(G_{n+1}(\Lambda), G_n(\Lambda); \mathbf{Z}) = 0$ for $n \ge 3k$,
- (ii) $H_k(G_{n+1}(\Lambda), G_n(\Lambda); \mathbf{Z}[\frac{1}{2}]) = 0$ for $n \ge 2k$.

Received by the editors October 2, 1978.

AMS (MOS) subject classifications (1970). Primary 18H10; Secondary 18F25.

¹ This research was supported in part by NSF grant MCS 77-04242.