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SELF ADJOINT OPERATOR EXTENSIONS 

SATISFYING THE WEYL COMMUTATION RELATIONS 

BY PALLE E. T. J0RGENSEN1 

ABSTRACT. Motivated by questions concerning uniqueness of unbounded de

rivations in commutative C *-algebras, and related problems on singular perturba

tions, we define two mixed global and infinitesimal versions of the Weyl operator 

commutation relations (one degree of freedom and infinite multiplicity), a weak 

one and a strong one. We announce two structure theorems of a geometric 

nature which characterize the nonselfadjoint symmetric operators entering in the 

Weyl systems. Proofs are only indicated. 

Our starting point is the following variant of the Stone-von Neumann Unique
ness Theorem [12], [4b]. Let(£/, V)be a pair of unitary one-parameter groups 
(always assumed strongly continuous) of operators on a separable Hubert space 
H, and suppose that the Weyl commutation relation 

(1) U(t)V(s) = V(s)U(t)eits (for all s, t G R) 

holds. Then it is possible to represent the system in the form SU{f)S^1f(x) = 
f(x + t), SV(s)S"1f(x) = eisxf(x), where S is an isometry of a space L2(R, M) 
of the norm-square integrable functions ƒ, with values in a separable Hubert 
space M, onto H; the dimension of M being equal to the (uniform) multiplicity of 
the spectrum of U.2 

Instead of (1) we consider the following infinitesimal Weyl relation with 
symmetric but generally nonselfadjoint generator. Let {U(f)}t^R be a unitary 
one-parameter group on H, and let g be a symmetric operator with dense do
main V(Q) in H. The corresponding relation 

(2) W)Qf. g) = Wfif. Qi) + WfM 8) for all ƒ, g G V(Q) 

is here called the infinitesimal Weyl relation for the triple (U, Q, H ). It is clearly 
equivalent to (1) if Q is essentially selfadjoint. But in scattering theory of singu
lar perturbations, and in recent investigations of the author concerning uniqueness 
of unbounded derivations, the relation (2) for nonselfadjoint Q plays an interesting 
role. Simple examples show that the operator Q of a given system (f/, Q, H) may 
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