MAXIMAL FUNCTIONS: A PROOF OF A CONJECTURE OF A. ZYGMUND

BY ANTONIO CÓRDOBA

In \mathbb{R}^n let us consider the family B_n of parallelepipeds with sides parallel to the coordinate axes. We may ask for conditions upon the locally integrable function f in order that

[*]
$$\lim_{\substack{x \in R \in B_n \\ \text{diam}(R) \to 0}} \frac{1}{\mu\{R\}} \int_R f(y) \, d\mu(y) = f(x)$$

a.e. x., where μ = Lebesgue measure in \mathbb{R}^n .

In 1935 B. Jessen, J. Marcinkiewicz and A. Zygmund [1] showed that [*] holds so long as $f \in L(1 + (\log^+ L)^{n-1})(\mathbb{R}^n)$ locally. Furthermore this result is the best possible in the following sense: if $\psi(t)$ is an Orlicz's space defining function such that $\psi(t) = o(t(\log t)^{n-1}), t \to \infty$, then statement [*] is false for a typical L_{ψ} -function (typical in the sense of Baire's category). Of course the case n = 1 was known before as Lebesgue's Differentiation theorem.

The following natural problem was proposed by A. Zygmund: given a positive function Φ on \mathbb{R}^2 , monotonic on each variable separately, let us consider the differentiation basis B_{Φ} in \mathbb{R}^3 defined by the two parameters family of parallelepipeds whose sides are parallel to the rectangular coordinate axis and whose dimensions are given by $s \times t \times \Phi(s, t)$, s, t positive real numbers. For which locally integrable functions f is statement [*] true with respect to the family B_{Φ} ?

In general the differentiation properties of B_{Φ} must be, at least, not worse than B_3 , the basis of all parallelepipeds in \mathbb{R}^3 whose sides have the direction of the coordinate axes, and, of course, not better than B_2 . A. Zygmund conjectured after his 1935 paper that B_{Φ} behaves like B_2 . This conjecture is now a theorem with applications to a.e. convergence of Poisson Kernels associated to certain symmetric spaces.

THEOREM. (a) B_{Φ} differentiates integrals of functions which are locally in $L(1 + \log^+ L)(\mathbf{R}^3)$, that is

AMS (MOS) subject classifications (1970). Primary 42A68, 42A92; Secondary 42A18.

©American Mathematical Society 1979 0002-9904/79/0000-0018/\$01.75

Received by the editors August 29, 1978.