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BY HARALD NIEDERREITER1 

Nothing in Nature is random. . . . A thing appears random only through 
the incompleteness of our knowledge. 

Spinoza, Ethics I 
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1. Introduction. The subject matter of this talk is at the crossroads of two 

areas which will turn out to have more than only an etymological kinship, 
namely numerical analysis and number theory. Like so many mixed breeds, it 
has its fascinations and attractions, but also its inherent dilemmas. A multi­
tude of concepts and devices dear to numerical analysts and computer users 
are, in open or disguised form, of an arithmetic nature, and problems arising 
in the computational workshop, especially those requiring effective methods, 
are now treated quite frequently with the powerful tools of the number 
theorist. This provides for a vivid interplay and is a source of enrichment for 
both disciplines. Of course, the occasion only permits us to look at a certain 
segment in the broad spectrum of activities. The leitmotif in our discussion 
will be the simulation of procedures containing an element of randomness by 
judiciously chosen deterministic schemes, with number theory playing a 
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