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0. Introduction. This paper will survey recent progress in understanding the 
propagation of singularities of solutions to linear partial differential equations 
Pu — f> particularly hyperbolic equations, such as the wave equation (32/3f2 

- A)w = ƒ. Theorems describing this behavior, for general initial data, 
probably began with Lax [21] and Courant and Lax [6], although work on the 
problem dates back further. The method of analysis, known as geometrical 
optics, was used by Sommerfeld and Runge [44] and Birkhoff [2] in an effort 
to construct approximate solutions to the wave equation. This method was 
forged into a powerful tool, the theory of Fourier integral operators, by 
Hörmander [15], [16] and applied to get very general global results on 
propagation of singularities in [16] and [8]. 

In order to give a precise statement of Hörmander's theorem on 
propagation of singularities, we need to define the wave front set of a 
distribution, denoted WF(w), where u e fy'(ti) is a distribution on some 
domain Q c R". WF(w) was introduced by Hörmander [15], based on Sato's 
notion of S. S. u [42]. WF(w) will be a subset of r*(Q) «ÖXR". One way to 
give the definition is to say (JCO, £0) & WF(u) provided there is a <p e C0°°(Q), 
<p = 1 near JCQ, such that (<p«HÖ is rapidly decreasing as |£| -» oo for £ in 
some open cone T containing £>• An equivalent definition, using pseudo 
differential operators, will be given in §1. It turns out that the projection 
r*(Q)-»Q maps WF(w) onto the singular support of u (sing supp w), so 
WF(M) provides finer information than sing supp u. 

Now suppose Pu = ƒ in Q. We suppose P is a differential operator, or more 
generally a pseudo differential operator of order m, whose principal symbol 
pm(x, I), homogeneous of degree m in £, is real valued. Let q(x> Ö * 
|£|x~mpm(xi D, and consider the Hamiltonian vector field on T*(Q): 
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