PROPAGATION, REFLECTION, AND DIFFRACTION OF SINGULARITIES OF SOLUTIONS TO WAVE EQUATIONS

BY MICHAEL E. TAYLOR¹

Contents

0. Introduction

1. Fourier integral operators and propagation of singularities

2. Reflection of singularities

3. Grazing rays and diffraction

4. Diffraction theory and scattering theory

0. Introduction. This paper will survey recent progress in understanding the propagation of singularities of solutions to linear partial differential equations Pu = f, particularly hyperbolic equations, such as the wave equation $(\partial^2/\partial t^2 - \Delta)u = f$. Theorems describing this behavior, for general initial data, probably began with Lax [21] and Courant and Lax [6], although work on the problem dates back further. The method of analysis, known as geometrical optics, was used by Sommerfeld and Runge [44] and Birkhoff [2] in an effort to construct approximate solutions to the wave equation. This method was forged into a powerful tool, the theory of Fourier integral operators, by Hörmander [15], [16] and applied to get very general global results on propagation of singularities in [16] and [8].

In order to give a precise statement of Hörmander's theorem on propagation of singularities, we need to define the wave front set of a distribution, denoted WF(u), where $u \in \mathfrak{D}'(\Omega)$ is a distribution on some domain $\Omega \subset \mathbb{R}^n$. WF(u) was introduced by Hörmander [15], based on Sato's notion of S. S. u [42]. WF(u) will be a subset of $T^*(\Omega) \approx \Omega \times \mathbb{R}^n$. One way to give the definition is to say $(x_0, \xi_0) \notin WF(u)$ provided there is a $\varphi \in C_0^{\infty}(\Omega)$, $\varphi = 1$ near x_0 , such that $(\varphi u)^{\circ}(\xi)$ is rapidly decreasing as $|\xi| \to \infty$ for ξ in some open cone Γ containing ξ_0 . An equivalent definition, using pseudo differential operators, will be given in §1. It turns out that the projection $T^*(\Omega) \to \Omega$ maps WF(u) onto the singular support of u (sing supp u), so WF(u) provides finer information than sing supp u.

Now suppose Pu = f in Ω . We suppose P is a differential operator, or more generally a pseudo differential operator of order m, whose principal symbol $p_m(x, \xi)$, homogeneous of degree m in ξ , is *real valued*. Let $q(x, \xi) = |\xi|^{1-m}p_m(x, \xi)$, and consider the Hamiltonian vector field on $T^*(\Omega)$:

$$H_q = \sum_{j=1}^n \left(\frac{\partial q}{\partial x_j} \quad \frac{\partial}{\partial \xi_j} - \frac{\partial q}{\partial \xi_j} \quad \frac{\partial}{\partial x_j} \right).$$

AMS (MOS) subject classifications (1970). Primary 35L05, 35L15, 35L20.

¹Work supported in part by NSF grant MCS77-03634.

C American Mathematical Society 1978

An Invited Address presented at the Annual Meeting of the American Mathematical Society in Atlanta, Georgia, on January 6, 1978; received by the editors August 29, 1977.