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It is a well-known result of Kadec that every two separable infinite dimen­
sional Banach spaces are homeomorphic. Also in large classes of nonseparable 
Banach spaces (perhaps all) the density character of a Banach space is its only 
topological invariant (see the book [2] for details). The situation changes con­
siderably if we consider uniform homeomorphisms. Several results are known 
which prove the nonexistence of uniform homeomorphisms between certain 
Banach spaces of the same density character. As a matter of fact, the following 
problem was raised by many mathematicians: Do there exist two nonisomorphic 
Banach spaces which are uniformly homeomorphic? (Le. does the uniform struc­
ture of a Banach space determine its linear structure?) For a recent survey of 
results related to this problem see [3]. 

While studying the question of existence of nonlinear liftings, we found in 
a surprisingly simple manner an example which answers this problem. Let T be 
a set of the cardinality of the continuum. Then c0(T) is lipschitz equivalent to 
a certain closed subspace X of l^ (i.e. there is a map T from c0(r) onto X so 
that T and T~x satisfy a lipschitz condition). Since there is no sequence of 
continuous linear functionals which separate the points in c0(T), this space is not 
isomorphic to a subspace of /«. 

Let UD F be Banach spaces and let <p: U—• U/Vbe the quotient map. 
We say that </> admits a lipschitz (resp. uniformly continuous) lifting if there is 
a lipschitz (resp. uniformly continuous) map \p: UjV—• C/so that <pi// is the 
identity of U/V. If such a lifting exists then C/ is Lipschitz (respectively uni­
formly) homeomorphic to the direct sum V © U/V. A suitable map T which es­
tablishes the homeomorphism is Tu — (u- tyiç(u), <p(u)). 

Let {Ny}y^T be a collection of subsets of the integers N so that each Ny 

is infinite and Ny n Ny* is finite for y # y'. Let X be the closed linear subspace 
of /^ spanned by c0 and the characteristic functions Xy of Ny9 y E I\ Clearly 
X/c0 is isometric to c0(r) with ^x7 corresponding to the natural unit vectors ey 

of c0(T). The map <p admits a lipschitz lifting and thus X is lipschitz equivalent 
of c0(T) © c0 « c0(r). Indeed, let 

#t— 1 tn — 1 
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