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On an interval [a, b], we may place points f0,. * . , tn such that a = 10 < 
t! < * • * < tn = b. Using these points, called nodes, we may construct unique 
polynomials y0, . . . ,yn of degree n, such that, for 1 < i, ƒ < n>y£tj) = 1 and 
yt(tj) = 0 for ƒ =£ i. The Lagrange interpolating projection on the nodes t0,. • . , tn 

is the operator which takes any function ƒ continuous on [a, b] to the polynomial 
S?=oA )̂V/« It is easily seen that this projection is bounded for any degree n, for 
any interval [a, b], and for any set of nodes in [a, b]. The norm is easily shown 
to be the sup norm of A = SJLQI^I, called the Lebesgue function of the projec­
tion, and thus the norm depends exclusively on the placement of tv . . . , tn_x. 
It is irrelevant, in attempting to minimize the norm, to move tQ or tn. Of the 
function A, it is true that A(^) = 1 for 0 < i < n, while if n > 2 and if t is not a 
node, then A(f) > 1. Let \x, . • . , \n be the values given by 

\ = sup A(0 for 1 < i < n. 
tG[ti_l9ti] 

Then ||A|| = max1</<wXf.. 
It was conjectured by Serge Bernstein in 1932 that the norm of the inter­

polating projection is minimized when the nodes are so placed that \x = • • • = Xw, 
a conjecture rendered plausible, but by no means demonstrated, by the rather 
obvious fact that 

Tr>o>^rL> for l < /<«- l, 

and by the fact that moving any node into close proximity with one of its neigh­
bors increases ||A|| without bound. This communication will give the following 
theorem and an outline of its proof in a series of lemmas. 

THEOREM. For any n>2,if the norm of the Lagrange interpolation oper­
ator on an interval [a, b] with nodes a = t0 < tf < • • • < tn = b is to be mini­
mized, then it is necessary that the local maximum values \x, . . . ,\n of the 
Lebesgue function be equalized. 

The proof of this theorem depends on the fact that (Xt, . . . , \n) is a dif-
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