OPTIMIZATION OF THE NORM OF THE LAGRANGE INTERPOLATION OPERATOR

BY T. A. KILGORE

Communicated by Chandler Davis, December 2, 1976

On an interval [a, b], we may place points t_0, \ldots, t_n such that $a = t_0 < t_1 < \cdots < t_n = b$. Using these points, called nodes, we may construct unique polynomials y_0, \ldots, y_n of degree n, such that, for $1 \le i, j \le n, y_i(t_i) = 1$ and $y_i(t_j) = 0$ for $j \ne i$. The Lagrange interpolating projection on the nodes t_0, \ldots, t_n is the operator which takes any function f continuous on [a, b] to the polynomial $\sum_{i=0}^n f(t_i) y_i$. It is easily seen that this projection is bounded for any degree n, for any interval [a, b], and for any set of nodes in [a, b]. The norm is easily shown to be the sup norm of $\Lambda = \sum_{i=0}^n |y_i|$, called the Lebesgue function of the projection, and thus the norm depends exclusively on the placement of t_1, \ldots, t_{n-1} . It is irrelevant, in attempting to minimize the norm, to move t_0 or t_n . Of the function Λ , it is true that $\Lambda(t_i) = 1$ for $0 \le i \le n$, while if $n \ge 2$ and if t is not a node, then $\Lambda(t) > 1$. Let $\lambda_1, \ldots, \lambda_n$ be the values given by

$$\lambda_i = \sup_{t \in [t_{i-1}, t_i]} \Lambda(t) \quad \text{for } 1 \le i \le n.$$

Then $\|\Lambda\| = \max_{1 \le i \le n} \lambda_i$.

It was conjectured by Serge Bernstein in 1932 that the norm of the interpolating projection is minimized when the nodes are so placed that $\lambda_1 = \cdots = \lambda_n$, a conjecture rendered plausible, but by no means demonstrated, by the rather obvious fact that

$$\frac{\partial \lambda_i}{\partial t_i} > 0 > \frac{\partial \lambda_{i+1}}{\partial t_i}, \quad \text{for } 1 \le i \le n-1,$$

and by the fact that moving any node into close proximity with one of its neighbors increases $\|\Lambda\|$ without bound. This communication will give the following theorem and an outline of its proof in a series of lemmas.

THEOREM. For any $n \ge 2$, if the norm of the Lagrange interpolation operator on an interval [a, b] with nodes $a = t_0 < t, < \cdots < t_n = b$ is to be minimized, then it is necessary that the local maximum values $\lambda_1, \ldots, \lambda_n$ of the Lebesgue function be equalized.

The proof of this theorem depends on the fact that $(\lambda_1, \ldots, \lambda_n)$ is a dif-

Copyright © 1977, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 41A10; Secondary 41A50.