A TRUNCATION PROCESS FOR REDUCTIVE GROUPS ## BY JAMES ARTHUR¹ Communicated by J. A. Wolf, January 26, 1977 Let G be a reductive group defined over Q. Index the parabolic subgroups defined over Q, which are standard with respect to a minimal $^{(0)}P$, by a partially ordered set \S . Let 0 and 1 denote the least and greatest elements of \S respectively, so that $^{(1)}P$ is G itself. Given $u \in \S$, we let $^{(u)}N$ be the unipotent radical of $^{(u)}P$, $^{(u)}M$ a fixed Levi component, and $^{(u)}A$ the split component of the center of $^{(u)}M$. Following [1, p. 328], we define a map $^{(u)}H$ from $^{(u)}M(A)$ to $^{(u)}a = \text{Hom}(X(^{(u)}M)_{O}, R)$ by $$e^{\langle \chi, (u)_H(m) \rangle} = |\chi(m)|, \quad \chi \in X(^{(u)}M)_{\mathbb{Q}}, m \in {}^{(u)}M(\mathbb{A}).$$ If K is a maximal compact subgroup of G(A), defined as in [1, p. 328], we extend the definition of (u)H to G(A) by setting $$^{(u)}H(nmk) = {^{(u)}}H(m), \quad n \in {^{(u)}}N(A), m \in {^{(u)}}M(A), k \in K.$$ Identify ${}^{(0)}\mathfrak{a}$ with its dual space via a fixed positive definite form \langle , \rangle on ${}^{(0)}\mathfrak{a}$ which is invariant under the restricted Weyl group Ω . This embeds any ${}^{(u)}\mathfrak{a}$ into ${}^{(0)}\mathfrak{a}$ and allows us to regard ${}^{(u)}\Phi$, the simple roots of ${}^{(u)}P, {}^{(u)}A$), as vectors in ${}^{(0)}\mathfrak{a}$. If $v \leq u$, ${}^{(v)}P \cap {}^{(u)}M$ is a parabolic subgroup of ${}^{(u)}M$, which we denote by ${}^{(v)}P$ and we use this notation for all the various objects associated with ${}^{(v)}P$. For example, ${}^{(v)}\mathfrak{a}$ is the orthogonal complement of ${}^{(u)}\mathfrak{a}$ in ${}^{(v)}\mathfrak{a}$ and ${}^{(v)}\Phi$ is the set of elements $\alpha \in {}^{(v)}\Phi$ which vanish on ${}^{(u)}\mathfrak{a}$. Let R be the regular representation of G(A) on $L^2(ZG(Q)\backslash G(A))$, where we write Z for $^{(1)}A(R)^0$, the identity component of $^{(1)}A(R)$. Let f be a fixed K-conjugation invariant function in $C_c^{\infty}(Z\backslash G(A))$. Then R(f) is an integral operator whose kernel is $$K(x, y) = \sum_{\gamma \in G(Q)} f(x^{-1}\gamma y).$$ If u < 1 and $\lambda \in {}^{(u)}\mathfrak{a} \otimes \mathbb{C}$, let $\rho(\lambda)$ be the representation of G(A) obtained by inducing the representation $$(n, a, m) \longrightarrow_{(u)} R_{\mathrm{disc}}(m) \cdot e^{\langle \lambda, (u) \rangle} H(m)^{\langle \lambda, (u) \rangle}$$ from $^{(u)}P(A)$ to G(A). Here $_{(u)}R_{disc}$ is the subrepresentation of the representation AMS (MOS) subject classifications (1970). Primary 22E55; Secondary 32N10. 1Sloan Fellow.