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Let Xn be a sequence of real-valued random variables adapted to an in­
creasing sequence of a-algebras Fw. We denote by T, Tp T respectively the col­
lection of bounded, finite, and arbitrary stopping times for (Fw)nGN . This paper 
reports on recent progress concerning the theory of semiamarts, i.e. processes for 
which (EXT\^T is bounded, initiated in [3], and the theory of amarts, Le. pro­
cesses for which limrG:r EXr exists. We relate the notion of semiamart to proces­
ses of interest in the theory of optimal stopping (cf. [2] ), namely Xn such that 
\EX^\ < °° for M G Tp or for nET. For independent random variables Xn and 
for processes of the form Xn = c~* 2^-j Yt with increasing c„'s and indepen­
dent nonnegative Ff.'s, a new dominated estimate 

£(sup X£) < K sup EXp (=KV(T)) 

with K = 2 in the first and K < 5.46 in the second case, shows that such process­
es are semiamarts if and only if suplX„ I is integrable. Also in the case when 
F„ = Fm for all n9 m E N, a semiamart has a necessarily integrable supremum. 
This observation is used to construct averages of aperiodic stationary sequences, 
which are not semiamarts—thereby strengthening a result announced by A. Bellow 
[1]. This can be done also in the "descending" case, i.e. when the time domain 
N is replaced by -N (see [3]); thus our results indicate that there are no con­
nections between the amart theory and the ergodic theory of point transforma­
tions. 

THEOREM 1 (RIESZ DECOMPOSITION FOR SEMIAMARTS). Every semiamart 
(Xn, F„) can be represented as Xn — Yn + Zn where (Yn, Fn) is a martingale 
and (Zw, F„) w an L ̂ bounded semiamart such that for each A E (J Fw 

\ n C 1 n f 
lim inf - Y I Z, < 0 < lim sup - Y J . Z,. 

n r-*J A l n —. J A l 

n i = l n 1=1 

This generalizes the Riesz decomposition for amarts [3]. A variant of 
Theorem 1 permits us to give necessary and sufficient conditions for the unique­
ness of the Riesz decomposition. One consequence of the Riesz decomposition is: 
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