THE TRANSFER AND COMPACT LIE GROUPS

BY MARK FESHBACH

Communicated by Edgar H. Brown, Jr., November 1, 1976

1. Introduction. A map $\rho: X \to Y$ between two spaces induces a homomorphism $\rho^*: h(Y) \to h(X)$ between the cohomology groups of the spaces, where h is an arbitrary cohomology theory. In certain situations a transfer homomorphism $\tau^*: h(X) \to h(Y)$ has been defined by Becker and Gottlieb, Dold and others. The compositions $\tau^* \circ \rho^*: h(Y) \to h(Y)$ and $\rho^* \circ \tau^*: h(X) \to h(X)$ are of considerable interest as they relate the cohomologies of X and Y. The first type of composition is relatively easy to compute. The second is, in general, quite difficult.

Let G be a compact Lie group with H and K arbitrary closed subgroups with associated *l*-universal classifying spaces BG, BH, BK. Let $\rho(H, G)$: BH \rightarrow BG be the natural projection. Then transfers T(H, G): $h(BH) \rightarrow h(BG)$, T(K, G): $h(BK) \rightarrow h(BG)$ are defined by Dold's definition where $T(H, G) = T_{id}^{BH}$ in Dold's notation [D]. The main theorem is a double coset type theorem which generalizes the classical double coset theorem for finite groups [C-E, p. 257]. It is proved for arbitrary compact Lie groups.

2. Main result. Let K|G|H be the double coset space obtained as the orbit space of the left action of K on G/H. This space breaks up into a finite disjoint union of orbit-type manifold components $\{M_i\}$. Let $g_i \in G$ be a representative of M_i . Let $\chi^{\#}(M_i) = \chi(\overline{M}_i) - \chi(\overline{M}_i - M_i)$ be the internal Euler characteristic of M_i . Then if $H^g = gHg^{-1}$ we have

THEOREM 1 (DOUBLE COSET).

$$\rho^{*}(K, G) \circ T(H, G) = \sum \chi^{\#}(M_{i})T(H^{g_{i}} \cap K, K) \circ \rho^{*}(H^{g_{i}} \cap K, H^{g_{i}}) \circ C_{g_{i}}$$

where the sum is over the orbit-type manifold components of K | G | H. Cg: $h(BH) \rightarrow h(BH^g)$ is the cohomology isomorphism induced by the obvious map from BH^g to BH.

This theorem holds where G is a compact Lie group and H and K are arbitrary closed subgroups.

AMS (MOS) subject classifications (1970). Primary 55F40.

Copyright © 1977, American Mathematical Society

Key words and phrases. Transfer, classifying spaces, compact Lie group, double coset theorem.

¹Based on a thesis written at Stanford University under the supervision of Professor G. Brumfiel.