GENERATORS FOR ALGEBRAS OF RELATIONS

BY A. R. BEDNAREK AND S. M. ULAM

Communicated by J. T. Schwartz, May 11, 1976

Let \(B_n \) denote the collection of all binary relations on the set \(X = \{ 1, 2, \ldots, n \} \). The purpose of this paper is to observe that there exists a pair of relations on \(X \) that generate all of \(B_n \) under the boolean operations and relational composition.

In [1] C. J. Everett and S. M. Ulam introduced the notion of an abstract projective algebra. McKinsey [2] showed that every projective algebra is isomorphic to a subalgebra of a complete atomic projective algebra and thus, in view of the representation given in [1], every projective algebra is isomorphic to a projective algebra of subsets of a direct product; that is, to an algebra of relations.

Projective Algebra. A boolean algebra \(P \) with unit \(1 \) and zero \(0 \), so that for all \(x \in P \), \(0 \leq x \leq 1 \), is said to be a projective algebra if there are defined two mappings \(\pi_1 \) and \(\pi_2 \) of \(P \) into \(P \) satisfying the following:

\[
P_1. \quad \pi_i(a \lor b) = \pi_i a \lor \pi_i b.
\]

\[
P_2. \quad \pi_1 \pi_2 1 = p_0 = \pi_2 \pi_1 1 \text{ where } p_0 \text{ is an atom of } P.
\]

\[
P_3. \quad \pi_1 a = 0 \text{ if and only if } a = 0.
\]

\[
P_4. \quad \pi_i \pi_i a = \pi_i a.
\]

\[
P_5. \quad 0 < a \leq \pi_1 1, 0 < b \leq \pi_2 1, \text{ there exists an element } a \otimes b \text{ such that } \pi_1 (a \otimes b) = a, \pi_2 (a \otimes b) = b, \text{ with the property that } x \in P, \pi_1 x = a, \pi_2 x = b \text{ implies } x \leq a \otimes b.
\]

\[
P_6. \quad \pi_1 1 \otimes p_0 = \pi_1 1; p_0 \otimes \pi_2 1 = \pi_2 1.
\]

\[
P_7. \quad 0 < u, v \leq \pi_1 1 \text{ implies } (x \lor y) \otimes \pi_2 1 = (x \otimes \pi_2 1) \lor (y \otimes \pi_2 1); \text{ and } 0 < u, v \leq \pi_2 1 \text{ implies } \pi_1 1 \otimes (u \lor v) = (\pi_1 1 \otimes u) \lor (\pi_1 1 \otimes v).
\]

If the projective algebra \(P \) is a complete atomic boolean algebra, then \(P \) is called a complete atomic projective algebra. The projective algebra \(P \) is said to be projectively generated by a subset \(A \) if \(P \) can be obtained from \(A \) using \(\pi_1, \pi_2, \otimes \) and the boolean operations.

Consider \(B_n \) and let \(p_0 = (1, 1) \). We define the mappings \(\pi_1, \pi_2 : B_n \rightarrow B_n \) and a product \(\otimes : B_n \times B_n \rightarrow B_n \) as follows:

(i) \(\pi_1 \alpha = \alpha((X \times X)p_0), \)

(ii) \(\pi_2 \alpha = (p_0(X \times X))\alpha, \)

(iii) \(\alpha \otimes \beta = (\alpha(X \times X))\beta, \)

\[\text{AMS (MOS) subject classifications (1970). Primary 02J10.} \]

\[\text{Research supported by NSF Grant No. MSC75–21130.} \]