GENERATORS FOR ALGEBRAS OF RELATIONS ${ }^{1}$

BY A. R. BEDNAREK AND S. M. ULAM
Communicated by J. T. Schwartz, May 11, 1976

Let B_{n} denote the collection of all binary relations on the set $X=\{1,2$, $\ldots, n\}$. The purpose of this paper is to observe that there exists a pair of relations on X that generate all of B_{n} under the boolean operations and relational composition.

In [1] C. J. Everett and S. M. Ulam introduced the notion of an abstract projective algebra. McKinsey [2] showed that every projective algebra is isomorphic to a subalgebra of a complete atomic projective algebra and thus, in view of the representation given in [1], every projective algebra is isomorphic to a projective algebra of subsets of a direct product; that is, to an algebra of relations.

Projective algebra. A boolean algebra P with unit 1 and zero 0 , so that for all $x \in P, 0 \leqslant x \leqslant 1$, is said to be a projective algebra if there are defined two mappings π_{1} and π_{2} of P into P satisfying the following:
$\mathrm{P}_{1} . \pi_{i}(a \vee b)=\pi_{i} a \vee \pi_{i} b$.
$\mathrm{P}_{2} . \pi_{1} \pi_{2} 1=p_{0}=\pi_{2} \pi_{1} 1$ where p_{0} is an atom of P.
$\mathrm{P}_{3} . \pi_{i} a=0$ if and only if $a=0$.
$\mathrm{P}_{4} . \pi_{i} \pi_{i} a=\pi_{i} a$.
P_{5}. For $0<a \leqslant \pi_{1} 1,0<b \leqslant \pi_{2} 1$, there exists an element $a \square b$ such that $\pi_{1}(a \square b)=a, \pi_{2}(a \square b)=b$, with the property that $x \in P, \pi_{1} x=a, \pi_{2} x=$ b implies $x \leqslant a \square b$.
$\mathrm{P}_{6} . \pi_{1} 1 \square p_{0}=\pi_{1} 1 ; p_{0} \square \pi_{2} 1=\pi_{2} 1$.
$\mathrm{P}_{7} .0<x, y \leqslant \pi_{1} 1$ implies $(x \vee y) \square \pi_{2} 1=\left(x \square \pi_{2} 1\right) \vee\left(y \square \pi_{2} 1\right)$; and $0<u, v \leqslant \pi_{2} 1$ implies $\pi_{1} 1 \square(u \vee v)=\left(\pi_{1} 1 \square u\right) \vee\left(\pi_{1} 1 \square v\right)$.

If the projective algebra P is a complete atomic boolean algebra, then P is called a complete atomic projective algebra. The projective algebra P is said to be projectively generated by a subset A if P can be obtained from A using π_{1}, π_{2}, \square and the boolean operations.

Consider B_{n} and let $p_{0}=(1,1)$. We define the mappings $\pi_{1}, \pi_{2}: B_{n} \longrightarrow$ B_{n} and a product $\square: B_{n} \times B_{n} \rightarrow B_{n}$ as follows:
(i) $\pi_{1} \alpha=\alpha\left((X \times X) p_{0}\right)$,
(ii) $\pi_{2} \alpha=\left(p_{0}(X \times X)\right) \alpha$,
(iii) $\alpha \square \beta=(\alpha(X \times X)) \beta$,

AMS (MOS) subject classifications (1970). Primary 02 J 10.
${ }^{1}$ Research supported by NSF Grant No. MSC75-21130.

