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Consider the nonlinear integral equation of Hammerstein type 

(1) u(x) + J"n k(x, y)f(y, u(y)Mdy) = h{x) (x G £2), 

where h and the solution u lie in a space X of measurable functions on £1. The 
Hammerstein equation is said to be regular if for 

(2) F(u)(y) = f(yy u(y)) (y G ft); Kv(x) = J f i k(x, y)v(y)p(dy) (x G ft), 

the operator KF is defined on all of X, and singular otherwise. 
In some recent papers (summarized in [2]), the writers have studied the 

existence theory for regular Hammerstein equations in Lp(|3) with 1 <p < +°° 

under very general assumptions on K and F. In later papers (cf. [4] ), one of the 
writers has obtained general existence results for the singular case, using measure-
theoretic arguments and mild compactness assumptions on K. We present results 
here without compactness assumptions based on a new theorem on linear mono­
tone operators. 

THEOREM 1. Let X be a reflexive Banach space, LQ and Lx linear mono­

tone mappings from X into 2X* with L0 ÇL%. Then there exists a maximal 

monotone linear map from X into 2X such that L0 CL Ç L\. 

For single-valued, densely defined maps in Hubert space, this coincides with 
a theorem of R. S. Phillips [6] obtained using ideas of M. Kreïn [5]. For reflex­
ive Banach spaces, in general, we have as a corollary a result obtained in 1968 by 
one of the writers [1] : 

THEOREM 2. Let X be a reflexive Banach space, L a closed linear mono­

tone map from X into 2X . Then L is maximal monotone if and only if L* is 

monotone. 

We sketch the proof of Theorem 1 (detailed proofs are given in [3] ). By 
a Zorn's Lemma argument we may construct a monotone linear map L with L0 

Ç L Ç L\ such that L is maximal monotone in the graph of L\. Let / be a 
duality map of X into X* corresponding to a norm on X with X and X* locally 
uniformly convex. 
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