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1. Introduction. In the book, Theory of games and economic behavior 

(1944), J. von Neumann and O. Morgenstern introduced a theory of solutions 
(or stable sets) for multi-person cooperative games in characteristic function form. 
A longstanding conjecture has been that the union of all solutions of any particu
lar game is a connected set. (E.g., see [3].) This announcement describes a 
twelve-person game for which the conjecture fails. The essential definitions for 
an n-person game will be reviewed briefly before the counterexample is presented. 
A sketch of the proof is presented here, and the details will appear elsewhere. 

2. The model. An n-person game is a pair (TV, v) where TV = {1, 2, . . . , n} 

is the set of players and y is a characteristic function on 2N, i.e., u assigns the 
real number v(S) to each subset S of TV and v(0) = 0. The set of imputations is 

A = he: Y. x( = y(TV) and xt > v({i}) for all i G TV> 
\ i<=N ' 

where x = (xv x2, . . . , xn) is a vector with real components. For any S C TV, 
let x(S) = 2fe sXj. For any X C A and nonempty S C TV, define Dom^X to be 
the set of all x G A such that there exists a y G X with y. > xi for all / G S and 
with y(S) < v(S). Let Dom X = U ^ ^ ^ D o m ^ X . A subset V of A is a 
solution if V n Dom V = 0 and F U Dom V - A. The core of a game is 

C = {* G ^ : x(S) > u(S) for all nonempty S C TV}. 

For any solution F, C C F and F Pi Dom C = 0 . 

A characteristic function u is superadditive if u(5 U 7) > u(S) + u(!T) when
ever S O r = 0. The game below does not have a superadditive v as is assumed 
in the classical theory, but it is equivalent solutionwise to a game with a super
additive v. (See [ l , p . 68].) 

3. Example. The 13 vital coalitions for our example consist of TV = 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and elements from three classes: 

B = {{1, 2}, {3, 4} , {5, 6}, {7, 8}, {9, 10}, {11, 12}}, 
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