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This is the book we have been waiting for ever since P. Cartier's pair of 
notes in the Comptes Rendus of 1967. In these, Cartier sketched a thorough­
going extension of the Dieudonné theory that had already classified commu­
tative formal groups over a perfect field of characteristic/?, in terms of modules 
over a certain noncommutative ring. But Cartier left the job of exposition 
unfinished, and Lazard has done us the service of organizing the material, 
filling in all the details, and adding a quantity of his own results, so that we 
finally have a basic reference on this aspect, probably the central aspect, of the 
theory of commutative formal groups. 

An «-dimensional (coordinatized) formal group is simply an «-tuple F 
= {Fx,..., Fn) of formal power series, subject to a single condition expressing 
a kind of associativity. Here, Ft = jF-(x,y), x = (x{,... ,xn\ y = (yx,..., 
yn); and x l5 ...,yn are 2n independent indeterminates. For instance, the 
expansion at the origin of the group law of an «-dimensional complex analytic 
Lie group gives rise to such series, once a coordinate system is chosen; the 
standard coordinatization of the one-dimensional multiplicative Lie group C*, 
for example, gives the single power series F(x,y) = x + y + xy. 

The advantage in talking about formal groups rather than local groups is 
that the single relation of associativity F(F(x, y), z) = F(x, F(y, z)) makes sense 
algebraically, in the ring of formal power series ^4[[x,y,z]], where A is any 
commutative ring whatever. We need not restrict ourselves to the groundrings 
C and R, not even to topological rings, and can now ask the relationship 
between Lie algebras over the ring A and formal groups over A. 
We then find that if A is a Q-algebra, i.e. if every positive integer is invertible 
in A, then the categories of finite-dimensional Lie algebras over A and of 


