COBORDISM FOR POINCARÉ DUALITY GROUPS

BY ROBERT BIERI AND BENO ECKMANN Communicated by S. Eilenberg, October 9, 1975

1. Relative homology for pairs. Homology and cohomology for a pair of groups $G \supset S$ (cf. [6]) can be extended to pairs (G, S) consisting of a group G and a family of subgroups $S = \{S_i\}$, as follows: If $S = \emptyset$ one takes the usual (absolute) groups of G. If $S \neq \emptyset$, let Δ be the kernel of the G-homomorphism $\bigoplus_i \mathbb{Z}(G/S_i) \twoheadrightarrow \mathbb{Z}$ given by augmentations; A being a G-module, we put $H^k(G, S; A) = H^{k-1}(G; \operatorname{Hom}(\Delta, A))$ and $H_k(G, S; A) = H_{k-1}(G; \Delta \otimes A)$ where G acts diagonally in $\operatorname{Hom}(\Delta, A)$ and $\Delta \otimes A$. One has exact sequences

$$\cdots \longrightarrow H^{k}(G, S; A) \longrightarrow H^{k}(G; A) \longrightarrow \prod_{i} H^{k}(S_{i}; A) \xrightarrow{\delta} H^{k+1}(G, S; A) \longrightarrow \cdots,$$
$$\cdots \longrightarrow H_{k+1}(G, S; A) \xrightarrow{\partial} \bigoplus_{i} H_{k}(S_{i}; A) \longrightarrow H_{k}(G; A) \longrightarrow H_{k}(G, S; A) \longrightarrow \cdots.$$

2. Poincaré duality pairs. The product structure for Ext* and Tor_{*} (cf. [4, Chapter XI]) yields, for $\alpha \in H_n(G, S; B)$, cap-products $\alpha \cap -: H^k(G; A) \to H_{n-k}(G, S; B \otimes A)$ and $H^k(G, S; A) \to H_{n-k}(G; B \otimes A)$, with diagonal G-action in $B \otimes A$.

(1) DEFINITION. (G, S) is a Poincaré duality pair of dimension n (in short: PD^n -pair) if there is a G-module structure $\widetilde{\mathbf{Z}}$ on \mathbf{Z} and an element $e \in H_n(G, S; \widetilde{\mathbf{Z}})$ such that $e \cap -: H^k(G; A) \longrightarrow H_{n-k}(G, S; \widetilde{A})$ is an isomorphism for all A and k.

 $\widetilde{\mathbf{Z}}$ is called the "dualizing" module. \widetilde{A} stands for $\widetilde{\mathbf{Z}} \otimes A$. If S is empty, (1) coincides with the usual definition (cf. [1]) of a *Poincaré duality group* of dimension n (in short: PD^{n} -group).

(2) THEOREM. (G, S) is a PDⁿ-pair with dualizing module $\widetilde{\mathbf{Z}}$ if and only if G is a duality group (cf. [3]) with dualizing module $\widetilde{\Delta}$.

Thus various results and criteria for duality groups can be applied to PD^{n} pairs; note that $\widetilde{\Delta}$ is Z-free. We give here, and in §3, a list of consequences of
(1): Definition (1) is equivalent with $e \cap -: H^{k}(G, S; A) \longrightarrow H_{n-k}(G; \widetilde{A})$ being
an isomorphism for all A and k. The module \widetilde{Z} and the dimension n are determined by the pair (G, S). The pair is called *orientable* if G acts trivially on \widetilde{Z} ,

AMS (MOS) subject classifications (1970). Primary 18H10, 57B10; Secondary 20J05, 57A70, 57C20.

Key words and phrases. Relative homology of groups, Poincaré duality, oriented cobordism, nonoriented cobordism, graph of groups, finite projective resolutions, signature, characteristic classes.