VERSAL UNFOLDINGS OF G-INVARIANT FUNCTIONS BY V. POÉNARU

Communicated May 6, 1975

1. We announce here some results on equivariant local differential analysis. The proofs will appear elsewhere [7]. We consider a compact Lie group G, acting orthogonally on \mathbb{R}^n . $\mathbb{C}^{\infty}(x)$ (respectively $\mathbb{C}^{\infty}(\mathbb{R}^n)$) will denote the ring of germs of \mathbb{C}^{∞} functions around $0 \in \mathbb{R}^n$ (the ring of \mathbb{C}^{∞} functions of \mathbb{R}^n). The germ of \mathbb{R}^n at 0 will be denoted by X. $\mathbb{C}^{\infty}(x)^G$, $\mathbb{C}^{\infty}(\mathbb{R}^n)^G$ will denote the G-invariant germs (functions). We shall consider parameter (germs of) spaces U, V, \ldots , on which G acts, by definition, trivially.

If $f(x) \in C^{\infty}(x)^G$, an unfolding of f(x) is an $F(x, u) \in C^{\infty}(x, u)^G$ such that $F(x, 0) \equiv f(x)$. The unfolding F(x, u) is versal, if any other unfolding of f(x), $H(x, v) \in C^{\infty}(x, v)^G$, can be induced from F, by a commutative diagram

such that:

(a) $\Phi, \varphi \in C^{\infty}$,

- (b) Φ is G-equivariant,
- (c) $\Phi | X \times 0 \equiv \text{id } X$,
- (d) $H = F \circ \Phi$.

G also acts on smooth vector-fields on $X(\mathbb{R}^n)$. We consider the *invariant* (germs of) vector-fields $\Gamma^{\infty}(TX)^G \subset \Gamma^{\infty}(TX)$ i.e., fields such that $g\xi(x) = Tg(\xi(x)) = \xi(gx)$. $\Gamma^{\infty}(TX)^G$ is a $C^{\infty}(x)^G$ -module moreover, if $f(x) \in C^{\infty}(x)^G$, the subset

$$J_G(f) = \{ df(\xi), \, \xi \in \Gamma^{\infty}(TX)^G \} \subset C^{\infty}(x)^G.$$

is an ideal, called the *G*-jacobian ideal of f. We shall assume that f is given, and that $\dim_R C^{\infty}(x)^G/J_G(f) < \infty$.

By definition $F(x, u) \in C^{\infty}(x, u)^G$, unfolding of f, is *infinitesimally* versal if the images of $\partial F(x, 0)/\partial u_1, \ldots, \partial F(x, 0)/\partial u_k$ in $C^{\infty}(x)^G/J_G(f)$ generate the *R*-vector space $C^{\infty}(x)^G/J_G(f)$.

AMS (MOS) subject classifications (1970). Primary 58C25.

Copyright © 1976, American Mathematical Society