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Suppose R is a ring with identity element and k is a positive integer. 
Let J(k, R) denote the subring of R generated by its kth powers. If Z 
denotes the ring of integers, then G(k, R) = {a G Z: aR C J(k, R)} is an 
ideal of Z. 

Let Z[x] denote the ring of polynomials over Z and suppose aGR. 
Since the map p(x) —• p(a) is a homomorphism of Z[x] into R9 the well-
known identity (see [3, p. 325]) 

(1) k\x = k£ (- I)*"1"' (kJ1){fy+ if - ik} 
z=0 ^ ' 

in Z[x] tells us that k\ e G(k, Z[x]) C G(k, R). Since Z is a cyclic group 
under addition, this shows that G(k, R) is generated by its minimal positive 
element, which we denote by m(k, R). Abbreviating m(k, Z[x]) by m(k), 
we then have m(k, R)\m(k) and m(k)\k\. 

Thus m(k) is the smallest positive integer a for which there is an 
identity of the form 

(2) ax = 2>*W*)1* 

where a%9 • • • ,aneZ and gx(x), • • • ,gn(x) G Z[x]. 
On differentiating (2) with respect to x we have k\m(k). Thus if R 

is any ring with identity, 

(3) k\m{k\ m(k, R)\m(k), and m(k)\k\. 

For any k > 1 in Z, let Px(k) denote the set of primes less than k 
that divide k, and let P2(k) denote the set of primes less than k that fail 
to divide k. If p is a prime and r > 1, m > 1 are integers, then a number 
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We are indebted to H. Edgar and W. LeVeque for valuable references. 
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