SUMS OF kTH POWERS IN THE RING OF POLYNOMIALS WITH INTEGER COEFFICIENTS

BY TED CHINBURG AND MELVIN HENRIKSEN¹ Communicated by Robert Fossum, August 1, 1974

Suppose R is a ring with identity element and k is a positive integer. Let J(k, R) denote the subring of R generated by its kth powers. If Z denotes the ring of integers, then $G(k, R) = \{a \in Z : aR \subset J(k, R)\}$ is an ideal of Z.

Let Z[x] denote the ring of polynomials over Z and suppose $a \in R$. Since the map $p(x) \rightarrow p(a)$ is a homomorphism of Z[x] into R, the wellknown identity (see [3, p. 325])

(1)
$$k!x = \sum_{i=0}^{k-1} (-1)^{k-1-i} \binom{k-1}{i} \{(x+i)^k - i^k\}$$

in Z[x] tells us that $k! \in G(k, Z[x]) \subseteq G(k, R)$. Since Z is a cyclic group under addition, this shows that G(k, R) is generated by its minimal positive element, which we denote by m(k, R). Abbreviating m(k, Z[x]) by m(k), we then have m(k, R)|m(k) and m(k)|k!.

Thus m(k) is the smallest positive integer a for which there is an identity of the form

(2)
$$ax = \sum_{i=1}^{n} a_{i}[g_{i}(x)]^{k}$$

where $a_1, \dots, a_n \in Z$ and $g_1(x), \dots, g_n(x) \in Z[x]$.

On differentiating (2) with respect to x we have k|m(k). Thus if Ris any ring with identity,

(3)
$$k|m(k)$$
, $m(k,R)|m(k)$, and $m(k)|k!$.

For any $k \ge 1$ in Z, let $P_1(k)$ denote the set of primes less than k that divide k, and let $P_2(k)$ denote the set of primes less than k that fail to divide k. If p is a prime and $r \ge 1$, m > 1 are integers, then a number AMS (MOS) subject classifications (1970). Primary 10M05, 10B25, 12C15; Secondary 13F20.

We are indebted to H. Edgar and W. LeVeque for valuable references.

Convrient © 1975. American Ma