ORBIT STRUCTURE OF THE EXCEPTIONAL HERMITIAN SYMMETRIC SPACES. II

BY DANIEL DRUCKER¹

Communicated by S. S. Chern, May 7, 1974

This note describes results on the orbit structure of the exceptional hermitian symmetric space $E_6/SO(10) \cdot SO(2)$ analogous to those obtained for the space $E_7/E_6 \cdot SO(2)$ in [2].

1. J. Tits' construction of the complex Lie algebra \mathfrak{G}_6 . Let A be the algebra $\mathbb{C} \oplus \mathbb{C}$ with componentwise multiplication, and define the trace of an element of A to be the sum of its two components. As in [2], let J be the 27-dimensional Jordan algebra of hermitian 3×3 matrices over the complex Cayley numbers. Write A_0 and J_0 for the subsets of A and J consisting of elements with zero trace. Also let $\operatorname{Der}(J)$ be the Lie algebra of derivations of J and let $\{L(A)\}(B) = A \circ B$ denote multiplication in J. Now define an anticommutative multiplication $[\ , \]$ on the complex vector space $\mathbf{g} = (A_0 \otimes J_0) + \operatorname{Der}(J)$ by means of the following rules:

(a) [D, D'] is the usual commutator for $D, D' \in \text{Der}(\mathcal{J})$.

(b) $[D, a \otimes A] = a \otimes D(A)$ for $a \in A_0, A \in J_0$, and $D \in Der(J)$.

(c) $[a \otimes A, b \otimes B] = \frac{1}{2} \operatorname{Tr}(ab)[L(A), L(B)]$ for $a, b \in A_0$ and $A, B \in J_0$.

Then \mathbf{g} is the complex Lie algebra \mathfrak{G}_6 .

If we put $e = (1, -1) \in A_0$, then $A_0 = C \cdot e$, so $g = (C \cdot e \otimes J_0) + Der(J)$, and the multiplication in g is determined by the single rule

$$[e \otimes A + D, e \otimes A' + D'] = e \otimes \{D(A') - D'(A)\} + [L(A), L(A')] + [D, D']$$

for $A, A' \in \mathcal{J}_0$ and $D, D' \in \text{Der}(\mathcal{J})$.

Let A' be the set of elements in A of the form (w, w^*) , where w^*

¹Research partially supported by NSF GP-38724.

AMS (MOS) subject classifications (1970). Primary 17B25, 17B60, 32M15, 53C35; Secondary 17C40.

Key words and phrases. Hermitian symmetric space, bounded symmetric domain, holomorphic arc component, boundary component.