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This note describes results on the orbit structure of the exceptional 
hermitian symmetric space EJSO(10) • SO(2) analogous to those obtained for 
the space E7/E6 • 5*0(2) in [2]. 

1. J. Tits' construction of the complex Lie algebra @6. Let A be the 

algebra C © C with componentwise multiplication, and define the trace of 
an element of A to be the sum of its two components. As in [2], let J 
be the 27-dimensional Jordan algebra of hermitian 3 x 3 matrices over the 
complex Cayley numbers. Write A0 and J 0 for the subsets of A and J 
consisting of elements with zero trace. Also let Der (J) be the Lie algebra of 
derivations of J and let {L(A)}(B) = A o B denote multiplication in J. 
Now define an anticommutative multiplication [ , ] on the complex vector 
space j = (A0 <g) J 0 ) + Der (J) by means of the following rules: 

(a) [D, D'] is the usual commutator for D, D' G Der (J). 

(b) [Dya®A]=a®D(A) for aeA0,A€J0> and DGDer(J ) . 
(c) [a ® A, b <8> B] = KTi (ab)[L(A)9 L(B)] for a, b e A0 and 

A, Be j 0 . 
Then g is the complex Lie algebra @6. 

If we put e = (1, ~ 1) G A0, then A0 = C • e, so g = ( c ' e ® Jo) + 

Der (J), and the multiplication in g is determined by the single rule 

[e ® A + A e ® A' +D'] = e 0 {D(A') - D\A)} + [L(A)9 L(A')] + [D, D'] 

for A9 A' G J 0 and D, D' G Der (J). 
Let A' be the set of elements in A of the form (w, w*), where w* 
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