ON SPACES OF RIEMANN SURFACES WITH NODES¹

BY LIPMAN BERS

Communicated by Samuel Eilenberg, May 13, 1974

This is a summary of results, to be published in full elsewhere, which strengthen and refine the statements made in a previous announcement [1].

A compact Riemann surface with nodes of (arithmetic) genus p > 1 is a connected complex space S, on which there are $k = k(S) \ge 0$ points P_1, \dots, P_k , called *nodes*, such that (i) every node P_j has a neighborhood isomorphic to the analytic set $\{z_1z_2 = 0, |z_1| < 1, |z_2| < 1\}$, with P_j corresponding to (0, 0); (ii) the set $S \setminus \{P_1, \dots, P_k\}$ has $r \ge 1$ components $\Sigma_1, \dots, \Sigma_r$, called *parts* of S, each Σ_i is a Riemann surface of some genus p_i , compact except for n_i punctures, with $3p_i - 3 + n_i \ge 0$, and $n_1 + \dots + n_r = 2k$; and (iii) we have

$$p = (p_1 - 1) + \dots + (p_r - 1) + k + 1.$$

Condition (ii) implies that every part carries a *Poincaré metric*, and condition (iii) is equivalent to the requirement that the total Poincaré area of S be $4\pi(p-1)$.

From now on p is kept fixed and the letter S, with or without subscripts or superscripts, always denotes a surface with properties (i)-(iii). If k(S) = 0, S is called nonsingular; if k(S) = 3p - 3, S is called *terminal*.

A continuous surjection $f: S' \to S$ is called a *deformation* if for every node $P \in S$, $f^{-1}(P)$ is either a node or a Jordan curve avoiding all nodes and, for every part Σ of S, $f^{-1}|\Sigma$ is an orientation preserving homeomorphism. Two deformations, $f: S' \to S$ and $g: S'' \to S$ are called *equivalent* if there are homeomorphisms $\varphi: S' \to S''$ and $\psi: S \to S$, homotopic to an isomorphism and to the identity, respectively, such that $g \circ \varphi = \psi \circ f$. The *deformation space* D(S) consists of all equivalence classes [f] of deformations onto S. To every node $P \in S$ belongs a *distinguished subset* consisting

Copyright © 1974, American Mathematical Society

AMS (MOS) subject classifications (1970). Primary 32G15; Secondary 30A46, 30A58, 14H15.

¹Work partially supported by the NSF.