ON SPACES OF RIEMANN SURFACES WITH NODES ${ }^{1}$

BY LIPMAN BERS
Communicated by Samuel Eilenberg, May 13, 1974

This is a summary of results, to be published in full elsewhere, which strengthen and refine the statements made in a previous announcement [1].

A compact Riemann surface with nodes of (arithmetic) genus $p>1$ is a connected complex space S, on which there are $k=k(S) \geqslant 0$ points P_{1}, \cdots, P_{k}, called nodes, such that (i) every node P_{j} has a neighborhood isomorphic to the analytic set $\left\{z_{1} z_{2}=0,\left|z_{1}\right|<1,\left|z_{2}\right|<1\right\}$, with P_{j} corresponding to (0,0); (ii) the set $S \backslash\left\{P_{1}, \cdots, P_{k}\right\}$ has $r \geqslant 1$ components $\Sigma_{1}, \cdots, \Sigma_{r}$, called parts of S, each Σ_{i} is a Riemann surface of some genus p_{i}, compact except for n_{i} punctures, with $3 p_{i}-3+n_{i} \geqslant 0$, and $n_{1}+$ $\cdots+n_{r}=2 k$; and (iii) we have

$$
p=\left(p_{1}-1\right)+\cdots+\left(p_{r}-1\right)+k+1
$$

Condition (ii) implies that every part carries a Poincaré metric, and condition (iii) is equivalent to the requirement that the total Poincare area of S be $4 \pi(p-1)$.

From now on p is kept fixed and the letter S, with or without subscripts or superscripts, always denotes a surface with properties (i)-(iii). If $k(S)=0, S$ is called nonsingular; if $k(S)=3 p-3, S$ is called terminal.

A continuous surjection $f: S^{\prime} \rightarrow S$ is called a deformation if for every node $P \in S, f^{-1}(P)$ is either a node or a Jordan curve avoiding all nodes and, for every part Σ of $S, f^{-1} \mid \Sigma$ is an orientation preserving homeomorphism. Two deformations, $f: S^{\prime} \rightarrow S$ and $g: S^{\prime \prime} \rightarrow S$ are called equivalent if there are homeomorphisms $\varphi: S^{\prime} \longrightarrow S^{\prime \prime}$ and $\psi: S \rightarrow S$, homotopic to an isomorphism and to the identity, respectively, such that $g \circ \varphi=\psi \circ f$. The deformation space $D(S)$ consists of all equivalence classes $[f]$ of deformations onto S. To every node $P \in S$ belongs a distinguished subset consisting

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 32G15; Secondary 30A46, $30 \mathrm{~A} 58,14 \mathrm{H} 15$.
 ${ }^{1}$ Work partially supported by the NSF.

