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This is a summary of results, to be published in full elsewhere, which 
strengthen and refine the statements made in a previous announcement [1]. 

A compact Riemann surface with nodes of (arithmetic) genus p > 1 is 
a connected complex space S, on which there are k = k(S) > 0 points 
P j , • • • , Pk> called nodes, such that (i) every node P. has a neighborhood 
isomorphic to the analytic set {ZjZ2 = 0, \zt\ < 1, |z2 | < 1}, with Py cor­
responding to (0, 0); (ii) the set S\{Pl9 • • • , Pk] has r > 1 components 
S x , • • • , S r , called parts of S, each 2,. is a Riemann surface of some genus 
pi9 compact except for n( punctures, with 3pt - 3 + nt > 0, and n1 + 
• • • + nr = 2k\ and (iii) we have 

P = (pl-l) + ---+(pr - l ) + * + l . 

Condition (ii) implies that every part carries a Poincaré metric, and con­
dition (iii) is equivalent to the requirement that the total Poincaré area of S 

be 4ir(p - 1). 

From now on p is kept fixed and the letter S, with or without sub­
scripts or superscripts, always denotes a surface with properties (i)—(iii). If 
k(S) = 0, S is called nonsingular; if k(S) = 3p - 3, S is called terminal. 

A continuous surjection ƒ: S' —> S is called a deformation if for every 
node P G S, f~1(P) is either a node or a Jordan curve avoiding all nodes and, 
for every part X of S, / _ 1 | 2 ) is an orientation preserving homeomorphism. 
Two deformations, ƒ: S' —> S and #: S" —• S are called equivalent if there 
are homeomorphisms <p: S' —• 5" and \p: S —> S9 homotopic to an iso­
morphism and to the identity, respectively, such that g ° </? = \p ° f. The 
deformation space D(S) consists of all equivalence classes \f\ of deforma­
tions onto S. To every node PG S belongs a distinguished subset consisting 
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