OBSTRUCTIONS TO TRANSVERSALITY FOR COMPACT LIE GROUPS

BY TED PETRIE¹

Communicated by Glen E. Bredon, January 21, 1974

Throughout G is a compact Lie group which is topologically cyclic with dense generator g. Let N and M be smooth G manifolds without boundary and $Y \subset M$ a closed invariant submanifold. All manifolds are oriented and G preserves orientation. Let $f: N \rightarrow M$ be a proper G map. When is f properly G homotopic to a map γ which is transverse regular to $Y \subset M$, written $\gamma \cap Y$? We introduce obstructions which show that transversality is a global phenomena in contrast to the case G=1 where everything is local and trivial.

Without loss of generality, we may assume that $f^g: N^g \to M^g$ is transverse to Y^g and set $X^g = (f^g)^{-1}(Y^g)$. For each oriented real G vector bundle vover X^g such that the G representation on each fiber of v has no trivial factor and g preserves orientation on each fiber, let $\lambda_{\pm}(v)$ be the \pm eigenbundles of the canonical involution τ on $\lambda(v \otimes C) = \sum \lambda^i (v \otimes C)$ constructed from the orientation and an inner product on v. Let $\lambda_{-1}(v \otimes C) =$ $\sum (-1)^i \lambda^i (v \otimes C), I^{X^g} \in K_G(TX^g)$ be the index class of X^g , i.e. the symbol of the operator D^+ . See [1, p. 575]. Let $\mathscr{P} \subset R(G)$ be the prime ideal of characters $\{X \in R(G) | X(g) = 0\}$ and

(i)
$$\mathscr{B}(v) = \frac{\lambda_{+}(v) - \lambda_{-}(v)}{\lambda_{-1}(v \otimes C)} \cdot I^{X^g} \in K_G(TX^g)_{\mathscr{P}}.$$

Let $f: X \to Y$ be a G map. If f is an embedding there is a homomorphism $f!: K_G(TX) \to K_G(TY)$ [1]. By taking the product of Y with a real G module and using the Thom isomorphism for complex G vector bundles, we may assume that f! is defined for any map f and denote it by f_* . The normal bundle of Y in M is denoted by v(Y, M). Its restriction to Y^g has a splitting

(ii)
$$(i^g)^* v(Y, M) = v(Y, M)^g + v_2(Y, M),$$

where $v(Y, M)^g$ is the subbundle of points fixed by g and $i^g: Y^g \to Y$ is

AMS (MOS) subject classifications (1970). Primary 57E15, 57D99.

¹ Author is a Guggenheim fellow; research partially supported by S.F.B. grant Bonn and S.R.C. grant Oxford.

Copyright @ American Mathematical Society 1974