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ABSTRACT. The author continues to discuss this problem: given 
a nonzero nilpotent finite-dimensional associative algebra N over 
the perfect field k, describe the set of unital associative /r-algebras 
A satisfying the equation rad,4=JV, together with the "nowhere 
triviality" condition Ann^ N^N. In this paper the Lie homomor-
phism ô : SLie-̂ Der*; TV induced by bracketing (where A has Wedder-
burn decomposition as semidirect sum S+N) is studied as follows: 
(i) the kernel and image of ô are computed ; (ii) conditioning the 
derivation algebra Derfc TV conditions the semisimple S; (iii) for 
instance, Derfc TV solvable implies that S is a direct sum of fields ; 
(iv) those tori in Derfc N of the form OS are characterized in terms 
of their 0-weightspace in TV. 

1. Introduction. For previous discussions, see Hall [2] and Flanigan 
[1]. Throughout, N is a given finite-dimensional nilpotent ^-algebra 
with k perfect. We seek those semisimple ^-algebras S which satisfy the 
following conditions. 

(1.1) DEFINITION [1]. N accepts S as a nowhere trivial Wedderburn 
factor if there is a unital associative fc-algebra SA such that (i) Ac^N+S 
(Wedderburn decomposition), and (ii) SnAnnA 7V=(0). 

Note that (ii) forces A to be finite dimensional, and that N^(0) implies 
S7*(0). In [1] we examined candidates S for acceptance by considering 
such invariants of N as its quotients N/N* and its graded form gr N. 
Now we utilize the Lie algebra Derfc N of ^-algebra derivations N-+N by 
noting that, if N accepts S as in (1.1), then there is a Lie homomorphism 

(1.2) ô:Shie->DerkN 

with ô(b)x= [b, x]=bx—xb for all x in N, b in S, and with the products 
taken in A. 

We are particularly interested in those S which are direct sums of 
fields. Reason: the center of every semisimple algebra accepted by TV 
would be of this type. These direct sums of fields are determined by the 
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