SOME THEOREMS ON C-FUNCTIONS

BY LESLIE COHN¹

Communicated by E. M. Stein, November 29, 1973

The purpose of this note is to announce certain results I have obtained about the behavior of the Harish-Chandra C-function as a meromorphic function. The notation and terminology, if not explained, are that of [2], [3], or [6].

1. The C-ring. Let (P, A) be a fixed parabolic pair of a semisimple Lie group G having finite center, P=MAN the corresponding Langlands decomposition, K a fixed maximal compact subgroup. Let $\mathscr{G}, \mathscr{K}, \mathscr{K}_M$, \mathscr{M} be the universal enveloping algebras of G, K, K_M , and M, respectively $(K_M = K \cap M)$ —i.e. of their complexified Lie algebras \mathfrak{g}_C , \mathfrak{k}_C , $\mathfrak{k}_{M,C}$, \mathfrak{m}_C . Let $b \rightarrow b^i$ ($b \in \mathscr{G}$) denote the unique anti-automorphism of \mathscr{G} such that $X^i = -X$ ($X \in \mathfrak{g}$). Consider \mathscr{K} to be a right \mathscr{K}_M -module via the multiplication in $\mathscr{K}: b \circ d = bd$ ($b \in \mathscr{K}, d \in \mathscr{K}_M$), and consider \mathscr{M} to be a left \mathscr{K}_M -module via the operation $d \circ c = cd^i$ ($d \in \mathscr{K}_M, c \in \mathscr{M}$). We can then form the tensor product $\mathscr{K} \otimes \mathscr{K}_M \mathscr{M}$ of \mathscr{K}_M -modules. (We write $b \otimes c$ for elements of $\mathscr{K} \otimes \mathscr{K}_M \mathscr{M}$, $b \otimes c$ for elements of $\mathscr{K} \otimes \mathscr{M}$.) The group K_M acts on $\mathscr{K} \otimes \mathscr{K}_M \mathscr{M}$ via the (well-defined) representation $\rho: \rho(m)(b \otimes c) = b^m \otimes c^m$ ($b \in \mathscr{K}, c \in \mathscr{M}, m \in K_M$). Let $(\mathscr{K} \otimes \mathscr{K}_M \mathscr{M})^{K_M}$ denote the K_M -invariants.

PROPOSITION 1. $(\mathscr{H} \otimes_{\mathscr{H}_{M}} \mathscr{M})^{K_{M}}$ is a ring (i.e., the "obvious" multiplication is well defined). In fact, it is a left and right Noetherian integral domain (noncommutative, in general), hence has a quotient division algebra.

We refer to $(\mathscr{K} \otimes_{\mathscr{K}_{M}} \mathscr{M})^{K_{M}}$ as the C-ring associated to the pair (P, A).

Let τ be a left or double representation of K on a finite-dimensional Hilbert space V. Then there exists a representation λ_{τ} of the ring $\mathscr{K} \otimes \mathscr{M}$ on $C^{\infty}(M:V)$ defined as follows:

 $\lambda_{\tau}(b \otimes c)\psi(m) = \tau(b)\psi(c_i^{\iota}m) \qquad (b \in \mathcal{K}, c \in \mathcal{M}, m \in M, \psi \in C^{\infty}(M; V)).$ Let $C^{\infty}(M, \tau_M)$ denote the space of $\psi \in C^{\infty}(M; V)$ such that

$$\tau(k)\psi(m) = \psi(km) \qquad (k \in K_M, m \in M)$$

if τ is a left representation of K or such that

$$\tau(k_1)\psi(m)\tau(k_2) = \psi(k_1mk_2) \qquad (k_1, k_2 \in K_M, m \in M)$$

AMS (MOS) subject classifications (1970). Primary 43A90, 33A75; Secondary 39A10. ¹ Research partially supported by NSF Grants GP-25320 and GP37121.

Copyright © American Mathematical Society 1974