A PRODUCT FORMULA FOR AN ARF-KERVAIRE INVARIANT

BY EDGAR H. BROWN, JR.1

Communicated April 15, 1974

In [1] we introduced an Arf-Kervaire type of invariant $\sigma(M) \in Z_8 = Z/8Z$ defined for closed compact, even-dimensional manifolds M having a certain kind of orientation (see below). In this announcement we give a product formula for σ . Our results are applicable to Poincaré duality spaces, but for simplicity we give them for smooth manifolds. A special case of our formula was given in [2].

Let v^m be the map

$$v^m = \prod v_i : BO_k \to \prod_{2i>m} K(Z_2, i),$$

where $v_i \in H^i(BO_k)$ is the *i*th Wu class. Let BO_k^m be the fibration over BO_k induced by v^m from the contractible fibration. Let ζ_k be the universal k-plane bundle over BO_k , and let $\zeta_k^m = p^*\zeta_k$, where $p:BO_k^m \to BO_k$ is the projection. The Whitney sum map, $\zeta_k \times \zeta_l \to \zeta_{k+l}$, lifts to a map $\mu: \zeta_k^m \times \zeta_l^m \to \zeta_{k+l}^m$.

If M is an m-manifold, a Wu orientation of M is a bundle map $V: v \rightarrow \zeta_k^m$, where v is the normal bundle of $M \subset R^{m+k}$. (Every manifold has a Wu orientation.) If U and V are Wu orientations on M and N, $M \times N$ has a product orientation $U \times V$ defined in the obvious way. (For a detailed account of these ideas see [2].) Hereafter, manifold means a compact, closed, smooth manifold with a Wu orientation. $M \times N$ denotes the product manifold with the product orientation. The definition of σ given in [1] is applicable to M, with its Wu orientation, if dim M=2n. Let $\sigma(M)=0$ if dim M=2n+1. The definition of σ in [1] depended on a choice $\lambda_n: \pi_{2n+k}(T(\zeta_k^{2n}) \wedge K(Z_2, n)) \rightarrow Z_4$. Choose such λ_n 's for each n (such that $\lambda_n(\alpha_n)=2$ in the notation of [1]). (λ_{2n} can and should be chosen so that $\sigma(M)=\operatorname{index}(M)\operatorname{mod} 8$ if M is an oriented (in the usual sense) 4n-manifold.) Since we killed v_{n+1} to form BO_k^n , S^n has a nontrivial Wu orientation. Let S^n denote S^n with this orientation. It turns out that

AMS (MOS) subject classifications (1970). Primary 57A25, 57D65.

¹ The author was supported by NSF grant GP-38920X and a Science Research Council of Britain Fellowship while carrying out this research.