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1. Introduction. By a cycle Z of dimension r on a nonsingular alge­
braic variety X, we mean a formal linear combination Z = 2 n{ Yt of 
irreducible subvarieties Yt of dimension r, with integer coefficients n^ 
The smoothing problem for cycles asks whether a given cycle Z is equiva­
lent (for a suitable equivalence relation of cycles, such as rational equiva­
lence or algebraic equivalence) to a cycle Z ' = 2 n'iYu where the subvari­
eties Y'i are all nonsingular. Let I b e a nonsingular projective variety of 
dimension n over C. Then for each cycle Z of dimension r o n l w e can 
assign a cohomology class ö(Z) e H2n~2r(X, Z). We say that two cycles 
Z, Z' are homologically equivalent if ô(Z)=ô(Z'). Our main result is that 
there are cycles on certain Grassmann varieties which cannot be smoothed, 
even for homological equivalence, which is weaker than rational or alge­
braic equivalence. 

The smoothing problem was suggested by Borel and Haefliger [2, 
p. 497] in connection with their study of the cohomology class associated 
to a cycle. Hironaka [7] showed in characteristic zero that cycles of dimen­
sion ^min(3 , \(n — 1)) can always be smoothed. On a nonsingular 
variety of any characteristic he showed that if dim Z^(n — 1), then 
some multiple of Z can be smoothed. Kleiman [8] strengthened the latter 
result by showing that if dim Z<- | («+2) , then {(q— l)!)Zcan be smoothed, 
where q=n—r is the codimension of Z. The specific cycle which we show 
to be nonsmoothable was suggested by Kleiman and Landolfi [9], who 
conjectured that it could not be smoothed. 

Thorn, in his famous paper [11], studied the closely related question of 
which homology classes on a smooth manifold can be represented as the 
homology class of a submanifold. He also answered negatively a question 
of Steenrod, which asked if every homology class on a manifold was the 
image by some continuous map of the fundamental class of another mani­
fold. Note that in algebraic geometry if a homology class is the class 
of some cycle on a nonsingular variety X, then it is the image of the 
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