LATERAL COMPLETION FOR ARBITRARY LATTICE GROUPS

BY S. J. BERNAU¹

Communicated by Joseph Rotman, August 2, 1973

1. Introduction. An old problem in the theory of lattice groups is to construct, for a given lattice group G, a canonical extension, \hat{G} , with the property that if M is a subset of \hat{G} such that $x \wedge y = 0$ if $x, y \in M$ and $x \neq y$, then M has a supremum in \hat{G} . The problem was first solved, for conditionally complete vector lattices, by Nakano [7] and was also treated by Pinsker [8] with the conditional completeness assumption.

The property required of \hat{G} above is called *lateral completeness*. The requirement that G should be canonical is met by defining the *lateral completion* of G to be a laterally complete extension \hat{G} of G such that: (i) no sublattice group of \hat{G} is laterally complete and contains G; and (ii) G is dense in \hat{G} , which means that if $f \in \hat{G}$ and f > 0, there exists $g \in G$ such that $0 < g \leq f$. If requirement (ii) is dropped we call \hat{G} an \mathscr{L} -completion of G.

The existence and uniqueness of a lateral completion of G are consequences of the orthocompletion of the author [1] in the case G is representable. Conrad [5] simplified the proofs in [1] and also showed the existence and uniqueness of a lateral completion if G has zero radical. Conrad's paper points out that \mathscr{L} -completions exist in profusion, as a consequence of the Holland representation [6], and that they can be highly pathological. Byrd and Lloyd [4] showed that Conrad's methods can be pushed through to the completely distributive case.

2. The main theorem. We have the following

THEOREM. Every lattice group G has a lateral completion \hat{G} which is unique up to isomorphism.

The proof of this theorem is long and technical. We outline the method.

Let \mathscr{D} be the set of pairwise disjoint subsets of the lattice group G; i.e. $M \in \mathscr{D}$ if $\varnothing \neq M \subset G$ and $x \land y = 0$ for $x, y \in M, x \neq y$. We first construct

¹ Preparation of this paper was partially supported by NSF grant GP27916.

Copyright © American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 06A55; Secondary 06A50, 06A60, 06A75, 06A35.

Key words and phrases. Lateral completion, orthocompletion, radical of a lattice group, distributive radical of a lattice group, representable lattice group.