PERSISTENT MANIFOLDS ARE NORMALLY HYPERBOLIC

BY RICARDO MAÑE

Communicated by M. H. Protter, June 29, 1973

Let M be a compact, smooth, boundaryless manifold, and let $Diff^1(M)$ be the group of C^1 -diffeomorphisms of M endowed with the C^1 topology. If $f \in Diff^1(M)$, a compact invariant manifold of f, V, is a C^1 boundaryless submanifold of M, such that f(V) = V. In [1] and [2], M. Hirsch, C. Pugh and M. Shub proved that a normally hyperbolic compact invariant manifold (Definition 1 below) is persistent (Definition 2 below). The main purpose of this note is to announce the proof of the converse of this theorem.

1. The main theorem.

DEFINITION 1. If $f \in \text{Diff}^1(M)$, a compact invariant manifold of f, V, is normally hyperbolic if the tangent bundle of M restricted to V, TM/V, has a splitting $TM/V = TV \oplus N^sV \oplus N^uV$ where TV is the tangent bundle of V, and N^sV , N^uV , are Tf-invariant subbundles of TM/V such that there exist constants K > 0, $0 < \lambda < 1$ satisfying

$$\begin{aligned} \|(Tf)_{x}^{n}|(N^{s}V)_{x}\| &\leq K\lambda^{n}, \\ \|(Tf)_{x}^{-n}/(N^{u}V)_{x}\| &\leq K\lambda^{n}, \\ \|(Tf)_{x}^{n}/(N^{s}V)_{x}\| &\|(Tf)_{f^{n}(x)}^{-n}/(TV)_{f^{n}(x)}\| &\leq K\lambda^{n}, \\ \|(Tf)_{x}^{-n}/(N^{u}V)_{x}\| &\|(Tf)_{f^{-n}(x)}^{n}/(TV)_{f^{-n}(x)}\| &\leq K\lambda^{n}, \end{aligned}$$

for all $x \in V$, $n \in \mathbb{Z}^+$.

DEFINITION 2. If $f \in \text{Diff}^1(M)$, a compact invariant manifold of f, V, is persistent if there exist a neighborhood \mathcal{U} of f in $\text{Diff}^1(M)$ and a neighborhood U of V in M such that:

- (a) For all $g \in \mathcal{U}$, $V_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$ is a C^1 boundaryless submanifold of M and $V_f = V$.
 - (b) If g is C^1 near to f, V_g is C^1 near to $V_f = V$.

AMS (MOS) subject classifications (1970). Primary 58F10, 58F15.

¹ The results announced here are part of the author's doctoral thesis at IMPA under the guidance of J. Palis.

Copyright @ American Mathematical Society 1974