THE AFFINE STRUCTURES ON THE REAL TWO-TORUS. I

BY T. NAGANO¹ AND K. YAGI Communicated by S. S. Chern, April 17, 1973

We wish to complete the study of the affine structures on the real affine 2-tori T^2 , following N. H. Kuiper [2], J. P. Benzecri [1] and others. The category of the affine manifolds is defined, as usual, by the manifolds equipped with maximal atlas whose coordinate transformations are affine transformations $y^i = \sum_j a_j^i x^j + b^i$, a_j^i , $b^i \in R$, in the cartesian space R^n , and by the maps which are expressed locally with affine transformations in terms of the affine charts.

Our main result asserts that the affine structures on T^2 are completely determined by the holonomy groups, in which, however, the concept of the holonomy group requires a slight modification as follows.

Given an affine manifold M, its universal covering manifold M^{\sim} with the induced affine structure is immersed equidimensionally into R^n by an affine map d. The map d gives rise to a homomorphism $\eta:\pi_1(M) \to A(R^n)$ of the fundamental group into the affine group $A(R^n)$ in such a way that d is $\pi_1(M)$ -equivariant with respect to the action of $\pi_1(M)$ on R^n through η . The image of η is called the holonomy group H of M, which is unique up to an inner automorphism of $A(R^n)$. Here A(M), in general, denotes the affine automorphism group of the affine manifold M. When the image dM^{\sim} is not simply connected, we switch to its universal covering $(dM^{\sim})^{\sim}$ from R^n ; that is, we construct an affine immersion: $d^*:M^{\sim} \to (dM^{\sim})^{\sim}$ which covers d and a homomorphism $\eta^*:\pi_1M \to$ $A((dM^{\sim})^{\sim})$ accordingly. Now the modified holonomy group H^* of M is by definition the image $\eta^*(\pi_1M)$. When dM^{\sim} is simply connected, we simply put $H^* = H$. At any rate H^* can be regarded as a subgroup of the universal covering group $A(R^2)^{\sim}$ of $A(R^2)$.

THEOREM 1. Two affine structures on T^2 are isomorphic if and only if the modified holonomy groups are conjugate in $A(R^2)^{\sim}$.

The difficulty in the proof lies in establishing that d is a covering map onto dM^{\sim} . The difficulty may be illustrated by the fact that a surjective immersion of R^2 onto itself is not always a diffeomorphism. In any case, that d is a covering implies that T^2 is affine isomorphic with $(dM^{\sim})^{\sim}/H^*$. In order to describe the classification of H^* it is convenient to state the following theorem.

AMS(MOS) subject classifications (1970). Primary 53C05, 57D15.

¹ Partially supported by NSF GP-29662.