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1. Introduction. Let P, Q, and R be real-valued n x n matrix functions 
defined on the interval [a, b). Assume that P, Q, and R are continuous 
on [a, b) and that P(t) and R(t) are symmetric matrices for each t in [a, b). 
We do not assume that Q is symmetric. Also assume that R has the 
property that its value for any / in [a, b) is positive definite, that is, 
v*R(t)v > 0 for all «-vectors v ^ 0 and for each t in [a, b). Let 

Ax>y)\l\ = \\**(t)R(t)y(t) + x*(t)Q{tm + **(00*(0y(0 
(1.1) J e l 

+ x*{t)R{t)y{t)~] dt (a S *i S e2 < b)9 

for x and y in the class A of vector-valued functions described below. Also 
let 

(1.2) JJLx, y) = / (* , >0 I:, /e(x) = /e(x, *), 

(1.3) J(x, y) = lim inf Je(x, y), J(x) = lim inf Je(x) 
e-+b- e->b-

for x and JF in A. The class A is the set of vector-valued functions x*(t) = 
(*i(0» • • • » îi(0)> a = * = ^̂  satisfying 

(i) x(0 is continuous on the interval [a, è] and x(a) = x(è) = 0, 
(ii) x(t) is absolutely continuous and x*(t)x(t) is Lebesgue integrable 

on each closed subinterval of [a, b). A is a vector space of functions. 
/ is said to be singular at a point t in [a, b~\ if the determinant of R(t) 

is zero or not defined. The point t = è is a singular point in this paper. 

2. Preliminaries. What is presented here is part of a quadratic form 
theory developed and used extensively by Hestenes [3], [4]. Let Q(x) 
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