HOLOMORPHIC LEFSCHETZ FIXED POINT FORMULA

BY V. K. PATODI¹

Communicated by Michael Atiyah, December 27, 1972

1. Let X be an n-dimensional complex analytic manifold and $\varphi: X \to X$ a holomorphic map. Let Ω be the sheaf of germs of holomorphic functions on X and $H^i(X,\Omega)$ the ith cohomology group of X with coefficients in the sheaf Ω . The map φ defines endomorphisms, $H^i(\varphi)$ of $H^i(X,\Omega)$, $i \ge 0$. Let $L(\varphi)$ be the Lefschetz number defined by

$$L(\varphi) = \sum_{i=0}^{n} (-1)^{i} \operatorname{trace} H^{i}(\varphi).$$

We are concerned with the problem of computing $L(\varphi)$.

REMARK. Let G be a compact Lie group acting on X as a group of holomorphic diffeomorphisms and $\varphi \in G$. The problem in this case has been solved by Atiyah and Singer, see [2]. Also in the case φ has isolated fixed points, the problem was solved in the nondegenerate case (see §2 for definition) by Atiyah and Bott in [1] and by Toledo and Tong in [6] and [7] in the degenerate case.

2. The statement of main theorem. Let X_{φ} be the fixed point set of the map φ , $X_{\varphi} = \{x \in X \text{ s.t. } \varphi(x) = x\}$. We start by stating the conditions under which we have been able to compute the Lefschetz number $L(\varphi)$.

 $(C_1) X_{\varphi}$ is a complex analytic submanifold of X and moreover with this complex analytic structure, X_{φ} is a Kähler manifold.

Let us write X_{φ} as a finite union of closed connected submanifolds of X:

$$(1) X_{\varphi} = \bigcup_{i=1}^{N} Y_{i}.$$

Let $\lambda_1^i, \ldots, \lambda_{m_i}^i$ be the eigenvalues of the endomorphism $(\varphi_*)_z$ of $T_z(X)$, $z \in Y_i$, with multiplicities $n_1^i, \ldots, n_{m_i}^i$; eigenvalues λ_j^i are independent of $z \in Y_i$ because of the holomorphic nature of the situation. If 1 is an eigenvalue of the map φ_* we take $\lambda_1^i = 1$.

The vector bundles $T(X)|_{Y_i}$ decompose as a direct sum of holomorphic vector subbundles E_i^i ($1 \le j \le m_i$) whose fibres $(E_i^i)_z$ are defined by:

$$(E_j^i)_z = \{v \in T_z(X) \text{ s.t. } (\varphi_* - \lambda_j^i I)^{n_j^i} v = 0\}.$$

We now state our other conditions.

(C₂) The fixed points are nondegenerate: 1 is an eigenvalue of

AMS (MOS) subject classifications (1970). Primary 58G10, 53C65; Secondary 32A99.
¹ Supported in part by National Science Foundation grant GP-36418X.