SIGNATURES ON SEMILOCAL RINGS

BY MANFRED KNEBUSCH, ALEX ROSENBERG¹ AND ROGER WARE² Communicated July 28, 1971

We announce extensions of a part of the Artin-Schreier theory of real fields to semilocal rings. Detailed proofs will appear elsewhere.

A always denotes a (not necessarily noetherian) semilocal commutative ring such that no residue class field has only two elements. A signature on A is a homomorphism σ from the unit group, A^* , of A to $\{\pm 1\}$ with $\sigma(-1)$ = -1 and $\sigma(l^2 + am^2) = 1$ for all triples (a, l, m) in $A^* \times A \times A$ such that $l^2 + am^2$ is a unit and $\sigma(a) = 1$.

EXAMPLES. (i) If A is an integral domain and < is a total ordering of A then $\sigma: A^* \to \{\pm 1\}$ defined by $\sigma(a) = 1$ if a > 0 and $\sigma(a) = -1$ if a < 0 is a signature. If A is a field the signatures correspond bijectively with the orderings of A.

(ii) Let A be the local ring of the affine curve $X^2 + Y^2 = 0$ over the real field \mathbf{R} at (0, 0). Then the signature

$$\sigma: A^* \xrightarrow{\nu} R^* \xrightarrow{s} \{\pm 1\}$$

obtained by composing the evaluation map v at (0, 0) and the unique signature s of \mathbf{R} does not arise from an ordering of A.

(iii) For valuation rings we are able to analyze the situation to some extent: Let A be a valuation ring with maximal ideal m. Then any signature σ arises from an ordering of A. If A has rank one and $\sigma(1 + m) \neq 1$, then σ arises from a unique ordering. If A is a discrete rank one valuation ring and $\sigma(1 + m) = 1$, then there are exactly two orderings on A inducing the signature σ .

Let A now again be a general semilocal ring as above.

PROPOSITION 1. Let σ be a signature, a_1, \ldots, a_r units of A, and l_1, \ldots, l_r elements of A such that $b = l_1^2 a_1 + \cdots + l_r^2 a_r$ is also a unit. Then $\sigma(a_1)$ $= \cdots = \sigma(a_n) = 1$ implies $\sigma(b) = 1$.

DEFINITION. A subset M of A^* is saturated if M is a subgroup of A^* and a_1, \ldots, a_r in M implies b in M for all units $b = l_1^2 a_1 + \cdots + l_r^2 a_r$ with l_i in A. Thus Proposition 1 states that for any signature σ the set

$$\Gamma(\sigma) = \{a \text{ in } A^* | \sigma(a) = 1\}$$

is saturated.

AMS 1970 subject classifications. Primary 15A63, 13H99; Secondary 06A70, 12J15. ¹ Partially supported by NSF Grant GP-25600. ² Partially supported by NSF Grant GP-28915.

Copyright @ American Mathematical Society 1972