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ABSTRACT. The following theorem is proved: If A, B are PI-
algebras over a field F, then A <8FB is also a PI-algebra. 

Let F be a field, A and B two Pi-algebras (i.e., algebras satisfying 
a polynomial identity) over F. The problem whether also A®FB 
satisfies a polynomial identity has been open for some time [l, p. 228]. 
We have proved that if A and B are Pi-algebras, then A®FB is in­
deed a PI-algebra. A very brief outline of the proof is given here, and 
the details of the proof will appear elsewhere. 

Let {x} be an infinite set of noncommutative indeterminates over 
F, and let F[x] be the free ring in {x} over F. Let {xi, x2, • • • } 
= \xv} £ {x} be a fixed countable sequence of indeterminates from 
{x}. Let Sn denote the group of all permutations of {1, • • • , n} and 
let 

Vn = S p a n j e • • • %9% \ a E Sn} 

be the nl dimensional vector space, spanned by the nl monomials 
i n X\y , Xfi» 

An ideal QQF[x] is a T-ideal if f(x%, • • • , xn)ÇzQ and gi, • • • , gn 

ÇzF[x\ implies that f(gi, • • • , gn)G<2- I t is well known [l, p. 234] 
that the set of all identities of a Pi-algebra is a T-ideal. Let Q be the 
jT-ideal of identities of a Pi-algebra A, For each integer 0<n, define 
dn — dimCVn/iQAVn))- We call {dv\ "the sequence of codimensions" 
of Q (or ^4). Codimensions play an important role in the proof that 
A ®FB is a PI-algebra. 

I t follows from the definition of dn that there exist dn monomials 
Mi(xu • • • > # ! » ) , • • • » Mdn(xu • • • , # » ) which span Vn modulo Q, 
i.e., for each c £ 5 n there exist coefficients <t>i(<r)ÇzF} 1 ^ ^ 4 , such 
that 

dn 

Ma{x) » ^ • • • * „ s £ ^(a)Mt(x) (mod Q). 
* - i 
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