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1. For S(n) a sum of n independent identically distributed random 
variables with mean zero and variance one, Khintchine obtained the 
estimate 

(1.1) P(S(n)/Vn à O = exp ( - \ an (1 + o(l))) 

where an Î + °° with a certain rate of growth. Recently an elementary 
proof of this estimate was given by Mark Pinsky in [4], Using 
Pinsky's method and some nontrivial estimates in the theory of 
partial differential equations we prove that (1.1) holds for an interest­
ing class of Markov chains converging to a singular diffusion process 
on the half line R+~ [0, oo ]. The random walks we shall study have 
state space J+== JO, 1, 2, * • • } and transition probabilities p(i, j) 
given by £(i, i) = 0, i = 0, 1, 2, • • • , 

p(i, i + 1) = | (1 + T A ) , 

(i.2ï p(ifi-i) = i-p(i,i + i)f 

p(0, 1) = 1, the "reflecting barrier condition" at the origin. 

In addition we assume 0 ^ 7 < 1 . 
{X(n): w = 0, 1, • • • ,} denotes the random walk with transition 

matrix p(i,j) defined by (1.2), and Px{ ) denotes the measure induced 
on sequences of nonnegative integers by {X(n):X(0) =x}. 

THEOREM 1.1. If {an} is any sequence increasing to + oo satisfying 
the condition limn-oo o?n— (log n)/2 = — oo, then for each e> 0 there exists 
an integer N(e) so that for n à N(e) we have 

(1.3) exp ( - i a j ( l + 6)) è Po(X(n)/Vn §; an) g exp (-J<4(1 - e)). 
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