AN EXTENSION OF KHINTCHINE'S ESTIMATE FOR LARGE DEVIATIONS TO A CLASS OF MARKOV CHAINS CONVERGING TO A SINGULAR DIFFUSION¹

BY H. BREZIS, W. ROSENKRANTZ AND B. SINGER

Communicated by Harry Kesten, June 9, 1971

1. For *S(n)* a sum of *n* independent identically distributed random variables with mean zero and variance one, Khintchine obtained the estimate

(1.1)
$$
P(S(n)/\sqrt{n} \ge \alpha_n) = \exp(-\frac{1}{2} \alpha_n^2 (1 + o(1)))
$$

where $\alpha_n \uparrow + \infty$ with a certain rate of growth. Recently an elementary proof of this estimate was given by Mark Pinsky in [4], Using Pinsky's method and some nontrivial estimates in the theory of partial differential equations we prove that (1.1) holds for an interesting class of Markov chains converging to a singular diffusion process on the half line $\bar{R}_+=[0, \infty]$. The random walks we shall study have state space $I^+ = \{0, 1, 2, \cdots\}$ and transition probabilities $p(i, j)$ given by $p(i, i) = 0, i = 0, 1, 2, \cdots$

$$
p(i, i + 1) = \frac{1}{2}(1 + \gamma/i),
$$

(1.2)
$$
p(i, i - 1) = 1 - p(i, i + 1),
$$

 $p(0, 1) = 1$, the "reflecting barrier condition" at the origin.

In addition we assume $0 \le \gamma < 1$.

 $\{X(n): n=0, 1, \cdots\}$ denotes the random walk with transition matrix $p(i, j)$ defined by (1.2), and $P_x()$ denotes the measure induced on sequences of nonnegative integers by ${X(n):X(0)=x}$.

THEOREM 1.1. If $\{\alpha_n\}$ is any sequence increasing to $+\infty$ satisfying *the condition* $\lim_{n\to\infty} \alpha_n^2 - (\log n)/2 = -\infty$, then for each $\epsilon > 0$ there exists *an integer* $N(\epsilon)$ *so that for* $n \geq N(\epsilon)$ *we have*

$$
(1.3) \exp(-\tfrac{1}{2}\alpha_n^{\bullet}(1+\epsilon)) \leq P_0(X(n)/\sqrt{n}) \geq \alpha_n \leq \exp(-\tfrac{1}{2}\alpha_n^{\bullet}(1-\epsilon)).
$$

AMS 1970 *subject classifications.* Primary 60F10; Secondary 60J10, 60J25.

¹ The research in this paper was supported in part by the National Science Foundation under grant GP-9640 at Columbia University and by the National Science Foundation under grant GP-11460 at the Courant Institute. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Copyright *@* American Mathematical Society 1971