ON THE MEAN CURVATURE OF SUBMANIFOLDS OF EUCLIDEAN SPACE

BY BANG-YEN CHEN¹

Communicated by S. Sternberg, April 12, 1971

Let $x: M^n \to E^m$ be an immersion of an *n*-dimensional manifold M^n in a euclidean space E^m of dimension m (m > n > 1), and let ∇ and ∇' be the covariant differentiations of M^n and E^m , respectively. Let uand v be two tangent vector fields on M^n . Then the second fundamental form h is given by

(1)
$$\nabla'_{u}v = \nabla_{u}v + h(u, v).$$

If $\{e_1, \dots, e_n\}$ is an orthonormal basis in the tangent space $T_p(M)$ at $p \in M^n$, then the mean curvature vector H(p) at p is given by

(2)
$$H(p) = (1/n) \sum_{i=1}^{n} h(e_i, e_i).$$

Let \langle , \rangle denote the scalar product of E^m . If there exists a function f on M such that $\langle h(u, v), H \rangle = f \langle u, v \rangle$ for all tangent vector fields u, v on M^n , then M^n is called a *pseudo-umbilical submanifold* of E^m . If the covariant derivative of H in E^m is tangent to $x(M^n)$ everywhere, then H is said to be parallel in the normal bundle. In [2], [3], the author proved that if M^n is closed, then the mean curvature vector H satisfies

(3)
$$\int_{M^n} \langle H, H \rangle^{n/2} dV \geq c_n,$$

where dV denotes the volume element of M^n and c_n is the area of the unit *n*-sphere. The equality sign of (3) holds when and only when M^n is imbedded as a hypersphere in an (n+1)-dimensional linear subspace of E^m . It is interesting to know whether the inequality (3) can be improved for some special submanifolds of E^m .

The main purpose of this paper is to announce some results in this direction together with some results on pseudo-umbilical submanifolds. Details will appear elsewhere.

Key words and phrases. Mean curvature vector, minimal surface, pseudo-umbilical submanifold, Clifford torus, α th curvatures of first and second kinds.

¹ This work has been supported in part by NSF Grant GU-2648.

Copyright @ American Mathematical Society 1971

AMS 1970 subject classifications. Primary 53A05, 53A10, 53B25; Secondary 53C40.