NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS
AND THE GENERALIZED TOPOLOGICAL DEGREE
BY FELIX E. BROWDER
Communicated March 9, 1970

Introduction. It is our purpose in the present note to present a general existence theorem for noncoercive elliptic boundary value problems for operators of the form:

\[A(u) = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} D^\alpha A_\alpha(x, u, \ldots, D^m u), \]

on closed subspaces \(V \) of the Sobolev space \(W^{m,p}(G) \), \(G \) an open subset of \(\mathbb{R}^n \), \(n \geq 1 \). This existence theorem is based upon an extension of the theory of the generalized topological degree for \(A \)-proper mappings of Banach spaces introduced in Browder-Petryshyn [8], [9], and, in particular, on an extension of the Borsuk-Ulam theorem to pseudomonotone mappings \(T \) from a reflexive separable Banach space \(V \) to its conjugate space \(V^* \).

To make a precise statement of our general existence theorem possible, we introduce the following notation: For a given \(m \geq 1 \), we let \(\xi \) be the \(m \)-jet of a function \(u \) from \(\mathbb{R}^n \) to \(\mathbb{R}^s \) for some given \(s \geq 1 \), i.e. \(\xi = \{ \xi_\alpha : |\alpha| \leq m \} \), and set

\[\xi = \{ \xi_\alpha : |\alpha| = m \}, \quad \eta = \{ \eta_\beta : |\beta| \leq m - 1 \}, \]

where each \(\xi_\alpha, \xi_\alpha, \) and \(\eta_\beta \) is an element of \(\mathbb{R}^s \). The set of all \(\xi \) of the above form is an Euclidean space \(\mathbb{R}^{m^s} \), and correspondingly, \(\xi \in \mathbb{R}^{m^s} \), \(\eta \in \mathbb{R}^{m^{s-1}} \).

For each \(\alpha \), \(A_\alpha \) is assumed to be a function from \(G \times \mathbb{R}^m \) to \(\mathbb{R}^s \) satisfying the following conditions:

Assumptions on \(A(u) : (1) A_\alpha(x, \xi) \) is measurable in \(x \) for fixed \(\xi \) and continuous in \(\xi \) for fixed \(x \). For a given \(p \) with \(1 < p < \infty \), there exists a constant \(c \) such that

\[|A_\alpha(x, \xi)| \leq c \left(1 + \sum_{|\beta| \leq m} |\xi_\beta|^{p_\alpha} \right) \]

with \(p_\alpha \leq (p - 1) \) for \(|\alpha| = |\beta| = m \), and

AMS 1969 subject classifications. Primary 3547, 3536, 4780, 4785; Secondary 5536.

Key words and phrases. Nonlinear elliptic boundary value problems, generalized topological degree, Sobolev space, coercive, pseudomonotone, Borsuk-Ulam theorems, limit of \(A \)-proper mappings.