MODULAR REPRESENTATIONS OF CLASSICAL LIE ALGEBRAS

BY J. E. HUMPHREYS1

Communicated by A. Borel, February 10, 1970

Let K be an algebraically closed field of prime characteristic p. By a classical Lie algebra over K we shall understand a Lie algebra \mathfrak{g} obtained from a complex simple Lie algebra $\mathfrak{g}_{\mathfrak{G}}$ by the well-known procedure of Chevalley: see [7] [1], for example. In this note we announce some results on the representation theory of \mathfrak{g} over K; proofs will appear elsewhere. All modules considered will be finite-dimensional and restricted, unless otherwise specified.

0. Preliminaries. Denote by Σ the root system of $\mathfrak{g}_{\mathbb{C}}$ relative to a Cartan subalgebra, and let $\Pi = \{\alpha_1 \cdots \alpha_l\}$ be a simple system. Fix a Chevalley basis $\{X_{\alpha}, \alpha \in \Sigma; H_i, 1 \leq i \leq l\}$ of $\mathfrak{g}_{\mathbb{C}}$; if $\mathfrak{g}_{\mathbb{Z}}$ is the \mathbb{Z} -span of this basis, then $\mathfrak{g} = \mathfrak{g}_{\mathbb{Z}} \otimes K$. For convenience, we also denote by X_{α} , H_i the corresponding elements of \mathfrak{g} . Write $\mathfrak{h} = \mathfrak{h}_{\mathbb{Z}} \otimes K$ (= span of the H_i in \mathfrak{g}). Kostant's theorem [7, §2] describes the \mathbb{Z} -form $\mathfrak{U}_{\mathbb{Z}}$ of the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$ generated by all $X_{\alpha}^m/m!$ ($\alpha \in \Sigma$, $m \geq 0$).

If we let V_{λ} be the irreducible \mathfrak{g}_{C} -module of highest weight λ , and let $v_{0} \in V_{\lambda}$ be a maximal vector (a nonzero vector annihilated by all X_{α} , $\alpha \in \Pi$), then $\mathfrak{U}_{Z}v_{0}$ is an "admissible lattice." Tensoring with K yields a (restricted) \mathfrak{g} -module \overline{V}_{λ} , which is also a module for the simply connected Chevalley group G constructed from \mathfrak{g}_{C} over K. If v_{0} again denotes the maximal vector $v_{0} \otimes 1$ in \overline{V}_{λ} , then v_{0} has weight λ .

Let Λ denote the collection of p^l restricted weights λ characterized by the conditions $0 \leq \lambda(H_i) < p$, $1 \leq i \leq l$. For each $\lambda \in \Lambda$ let M_λ be the irreducible \mathfrak{g} -module of highest weight λ ; it is known that M_λ is a homomorphic, but not always isomorphic, image of \overline{V}_λ . The collection $\mathfrak{M} = \{M_\lambda | \lambda \in \Lambda\}$ exhausts the (isomorphism classes of) irreducible \mathfrak{g} -modules. Let \mathfrak{A} , \mathfrak{B} be the restricted universal enveloping algebras of \mathfrak{g} , \mathfrak{h} over K (u-algebras). (Left) \mathfrak{A} -modules correspond precisely to restricted (left) \mathfrak{g} -modules. Every u-algebra is a Frobenius algebra, and \mathfrak{A} is even symmetric.

AMS Subject Classifications. Primary 1730, 1640; Secondary 2080.

Key Words and Phrases. Classical Lie algebra, modular representations, characters, projective modules, blocks, indecomposable modules.

¹ Part of this research was carried out during a stay at the Institute for Advanced Study. I am also grateful to Queen Mary College (London) for their hospitality. Conversations with B. Braden, C. W. Curtis, T. A. Springer have been very helpful.