PARTIAL DIFFERENTIAL OPERATORS ON $L^{p}(E^{n})$

BY MARTIN SCHECHTER¹

Communicated by C. B. Morrey, Jr., October 4, 1968

Let $P(\xi)$ be a polynomial in the variables $\xi = (\xi_1, \dots, \xi_n)$. If we replace ξ by $D = (D_1, \dots, D_n)$, where $D_j = -i\partial/\partial x_j$, $1 \le j \le n$, we obtain a constant-coefficient partial differential operator P(D). Acting on the set C_0^{∞} of smooth functions with compact supports in Euclidean *n*-dimensional space E^n , the operator P(D) is closable in $L^p = L^p(E^n)$ for $1 \le p \le \infty$. The purpose of this note is to describe some of the spectral properties of its closure P_{0p} in L^p .

PROPOSITION 1. $\sigma(P_{02})$ consists of the closure of the set of values taken on by $P(\xi)$ with ξ real.

PROPOSITION 2. A point λ is in $\rho(P_{0p})$ if and only if $1/[P(\xi) - \lambda]$ is a multiplier in L^p (cf. [1]).

In applying this proposition we shall let $\mu = (\mu_1, \dots, \mu_n)$ be a multi-index of nonnegative integers. We set $|\mu| = \mu_1 + \cdots + \mu_n$ and

$$P^{(\mu)}(\xi) = \partial^{|\mu|} P(\xi) / \partial \xi_1^{\mu_1} \cdots \partial \xi_n^{\mu_n}.$$

With the aid of a theorem of Littman [1] we obtain

THEOREM 3. Suppose that 1 , and let*l*be the smallest integer <math>>n |1/2-1/p|. Assume that for ξ real

(1)
$$P^{(\mu)}(\xi)/P(\xi) = O(|\xi|^{-a|\mu|})$$
 as $|\xi| \to \infty$, $|\mu| \leq l$,

(2)
$$1/P(\xi) = O(|\xi|^{-b})$$
 as $|\xi| \to \infty$

where b > (1-a)n |1/2-1/p|. Then $\lambda \in \rho(P_{0p})$ if and only if $P(\xi) \neq \lambda$ for real ξ .

Let $P(\xi)$ and $Q(\xi)$ be polynomials.

PROPOSITION 4. A necessary and sufficient condition that $D(P_{02}) \subseteq D(Q_{02})$ is that

$$|Q(\xi)| \leq C(|P(\xi)| + 1), \quad \xi \text{ real.}$$

PROPOSITION 5. If $\lambda \in \rho(P_{0p})$, then a necessary and sufficient condition that $D(P_{0p}) \subseteq D(Q_{0p})$ is that $Q(\xi) / [P(\xi) - \lambda]$ be a multiplier in L^p .

¹ Research supported in part by NSF Grant GP-6888.