BOUNDARY VALUE PROBLEMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

BY ROBERT FENNELL¹ AND PAUL WALTMAN²

Communicated by Wolfgang Wasow, October 21, 1968

Let E^n denote Euclidean *n* space with norm $|\cdot|$ and let C_h denote the space of continuous E^n valued functions on [a-h, a], h > 0, with uniform norm $||\cdot||$. For a function x(t) on [a-h, b] and $t \in [a, b]$ let x_t denote the function on [a-h, a] whose value at θ is $x(t+\theta-a)$. Let $f(t, \Psi)$ be a mapping from $[a, b] \times C_h$ into E^n and let M and N be linear operators from C_h to C_h . In this paper we consider special cases of the boundary value problem

$$(1) y' = f(t, y_t),$$

$$My_a + Ny_b = 0, \quad b > a + h.$$

This is a nonlinear version of a problem posed by Cooke [1]. Other boundary value problems for functional differential equations have been studied recently by Grimm and Schmitt [3], Halanay [4], and Kato [6].

We treat the problem for bounded f and a restricted class of operators by initial value methods, that is, we seek to find an initial function $q \in C_{h}$ such that a solution of the initial value problem (1) and

(3)
$$y(t) = q(t), \quad a - h \leq t \leq a$$

satisfies the boundary condition (2). Some functions $f(t, y_i)$, not bounded, can be treated by approximation techniques and some non-homogeneous boundary conditions can also be considered.

THEOREM 1. Let $f(t, \Psi)$ be a continuous bounded function from $[a, b] \times C_h$ into E^n and let M and N be $n \times n$ matrices such that M+N is nonsingular. If $||(M+N)^{-1}N|| < 1$, then there exists a solution of (1) and (2).

METHOD OF PROOF. We give a brief sketch of the method of proof of Theorem 1. The proofs of the other theorems are similar. Assume first that solutions of the initial value problem are unique. Let $T: C_h \rightarrow C_h$ be defined as follows: for $q \in C_h$, let $Tq = x_b(q)$, that is, Tqis the segment at b of the solution of the initial value problem with

¹ Research of this author supported by a NASA Traineeship.

² Research of this author supported by Project Themis.