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1. Introduction. The Cartan domains, which we shall define in 
§3, include among them the four general types of (irreducible) 
bounded symmetric domains, first studied by E. Cartan [2], [3 J. An 
(essentially unique) invariant Riemannian metric—the Bergman 
metric—exists on each of these bounded symmetric domains, and 
the resulting differential geometry has been studied by Siegel [7], 
Hua [4], [5], Look [ô] and others. 

In this note we describe how the differential geometry of Cartan 
domains can be studied neatly and effectively through a study of the 
Euclidean w-planes in a pseudo-Euclidean (w+m)-space of index m. 
Our results include a geometric interpretation of the Bergman metric, 
the theorem that domains of the second and third types are totally 
geodesic submanifolds of a domain of the first type, and ranges of 
value of the sectional curvature. Only a brief description of the 
method and results will be given here. The reader will find in this and 
three other notes [8], [9], [lO] the essence of the differential geom­
etry of the eight nonspecial types of irreducible Hermitian symmetric 
spaces (see [ l]) . 

2. Euclidean n-planes in a pseudo-Euclidean space. Let F be the 
field R of real numbers, the field C of complex numbers, or the field 
H of real quaternions. Let {1, i, j$ k} be the usual basis of F over R. 
If £ = a o + a i i + a ? i + a 3 & , then 

£ = a0 — a\i — a%j — 03&, £r = a0 + ai* + &2j — 03A 

are two conjugates of £. If A is an n X m matrix with elements in F, we 
denote by A*, AT the two respective conjugate transposes of A. For 
a square matrix Af if A* =A, AT = A, or AT= —A, we say, respec­
tively, that A is Hermitian, r-symmetric, or r-skew-symmetric. 
Clearly, for F = R or C, r-symmetry and r-skew-symmetry are the 
ordinary symmetry and ordinary skew-symmetry. 

By definition, a pseudo-Euclidean space F$)m (of index m) is an 
(n+m) -dimensional left vector space over F provided with a (Hermi­
tian) inner product ( , ) such that there exist «-planes (i.e. w-dimen-
sional vector subspaces), but not (»+l)-planes, on which the induced 
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