A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL PROBLEMS WITH FUNCTIONAL DIFFERENTIAL SYSTEMS¹

BY H. T. BANKS

Communicated by Wolfgang Wasow, August 5, 1968

In this note we present a maximum principle in integral form for optimal control problems with delay-differential system equations which also contain delays in the control. Recent related results for particular cases of the systems discussed below may be found in [1], [5], and [6]. Vector matrix notation will be used and we shall not distinguish between a vector and its transpose.

Let α_0 and t_0 be fixed in R^1 with $-\infty < \alpha_0 < t_0$, $I = [\alpha_0, a)$ be a bounded interval containing $[\alpha_0, t_0]$, and put $I' = (t_0, a)$. For x continuous on I and t in I', the notation $F(x(\cdot), t)$ will mean that F is a functional in x, depending on any or all of the values $x(\tau), \alpha_0 \le \tau \le t$. $\overline{\Phi}$ will denote the class of absolutely continuous n-1 vector functions on $[\alpha_0, t_0]$. Let Ω be a given convex subset of the class of all bounded Borel measurable functions u defined on I into R^r , and 5 be a given C^1 manifold in R^{2n-1} . The problem considered is that of minimizing

$$J[\bar{\phi}, u, \bar{x}, t_1] = \int_{t_0}^{t_1} f^0(\bar{x}(\cdot), u(\cdot), t) dt$$

over $\overline{\Phi} \times \Omega \times C(I, \mathbb{R}^{n-1}) \times I'$ subject to

- (i) $\dot{\bar{x}}(t) = \bar{f}(\bar{x}(\cdot), u(\cdot), t)$ a.e. on $[t_0, t_1]$, $\bar{x}(t) = \bar{\phi}(t)$ on $[\alpha_0, t_0]$,
- (ii) $(\bar{x}(t_0), \bar{x}(t_1), t_1) \in \mathfrak{I}.$

We assume that $f = (f^0, \bar{f}) = (f^0, f^1, \cdots, f^{n-1})$ is an *n*-vector functional of the form

(1)
$$f^{i}(\bar{x}(\cdot), u(\cdot), t) = h^{i}(\bar{x}(\cdot), t) + \int_{\alpha_{0}}^{t} u(s)d_{s}\eta(t, s)g^{i}(\bar{x}(s), t)$$
$$for \ i = 0, 1, \dots, n-1.$$

where the integral is a Lebesgue-Stieltjes integral. Each $h^i(\bar{x}(\cdot), t)$ is

¹ This research was supported in part by the Air Force Office of Scientific Research, under Grant No. AF-AFOSR 693-67, in part by the National Aeronautics and Space Administration, under Grant No. NGR 40-002-015 and in part by the National Science Foundation, under Grant No. GP 9024.