AN ALGEBRA OF SINGULAR INTEGRAL OPERATORS WITH TWO SYMBOL HOMOMORPHISMS

BY H. O. CORDES¹

Communicated by M. H. Protter, May 28, 1968

1. Let $\mathbb{R}_{+}^{n+1} = \{(x, y) = (x_1, \dots, x_n, y) : x_j, y \in \mathbb{R}, y \ge 0\}$ and let Δ_d, Δ_n denote the two unbounded positive self-adjoint operators of the Hilbert-space $\mathfrak{H} = \mathfrak{L}^2(\mathbb{R}_{+}^{n+1})$ generated by closing the Laplace operator in $C_0^{\infty}(\mathbb{R}_{+}^{n+1})$ under Dirichlet and Neumann boundary conditions at y = 0, respectively.

We propose to study the "convolution algebra" $\mathfrak{A}^{\#}$ generated by the generalized Riesz-Hilbert-operators

$$\Lambda_d = (1 - \Delta_d)^{-1/2}, \quad \Lambda_n = (1 - \Delta_n)^{-1/2}, \quad S_d = -i\partial/\partial y \Lambda_d,$$

(1) $S_n = -i\partial/\partial y \Lambda_n, \quad S_{d,j} = -i\partial/\partial x_j \Lambda_d, \quad S_{n,j} = -i\partial/\partial x_j \Lambda_n,$
 $j = 1, \cdots, n$

and later on also will adjoin certain multiplications by continuous functions, to obtain an algebra \mathfrak{A} of singular integral operators on the half-space \mathbb{R}_{+}^{n+1} .

Both C*-algebras \mathfrak{A}^{\sharp} and \mathfrak{A} have noncompact commutators, but each is commutative modulo a certain larger ideal (\mathfrak{G}^{\sharp} and \mathfrak{E} , respectively). We therefore obtain a first symbol function σ_A for $A \in \mathfrak{A}^{\sharp}$ (or \mathfrak{A}) which is a continuous complex-valued function over the maximal ideal space of $\mathfrak{A}^{\sharp}/\mathfrak{G}^{\sharp}$ (or $\mathfrak{A}/\mathfrak{G}$). If σ_A does not vanish, we can invert the operator mod \mathfrak{G}^{\sharp} (or \mathfrak{G}), or reduce the singular integral equation $A_n u = f$ to an equation (1+E)u = g with $E \in \mathfrak{G}^{\sharp}$ (or \mathfrak{G}).

Now, we find that the ideals \mathfrak{G}^{\sharp} and \mathfrak{G} are isomorphic to topological tensor products of the form $\mathfrak{C}(\mathfrak{h}) \hat{\otimes} \mathfrak{S}^{\sharp}$, $\mathfrak{E} = \mathfrak{C}(\mathfrak{h}) \hat{\otimes} \mathfrak{S}$, with respect to a suitable direct decomposition

$$\mathfrak{H} = \mathfrak{h} \otimes \mathfrak{k}, \quad \mathfrak{h} = \mathfrak{L}^2(\mathbb{R}^+), \quad \mathfrak{k} = \mathfrak{L}^2(\mathbb{R}^n),$$

where $\mathfrak{C}(\mathfrak{h})$ denotes the compact ideal of \mathfrak{h} , while \mathfrak{S}^{\sharp} and \mathfrak{S} are certain algebras of singular integral operators over the boundary \mathbb{R}^{n+1} .

Therefore to each operator $E \in \mathfrak{G}^{\sharp}$ (or \mathfrak{G}) there can be associated an operator valued symbol $\tau_{\mathfrak{B}}(m) \in \mathfrak{G}(\mathfrak{h})$ such that 1+E is Fredholm if and only if $1+\tau_{\mathfrak{B}}(m)$ is regular for all m. The construction of a Fredholm inverse for $A \in \mathfrak{A}$ will therefore depend on two symbols: first we invert the operator modulo \mathfrak{G} , if the complex-valued symbol

¹ Supported by contract AF-AFOSR 553-64.