THE FUNDAMENTAL LEMMA OF COMPLEXITY FOR ARBITRARY FINITE SEMIGROUPS¹

BY JOHN RHODES²

Communicated by Saunders MacLane, June 26, 1968

1. Statement of the results and some corollaries. All semigroups considered are of finite order. In the recent paper [3] and in the recent book [2] the complexity of a semigroup was defined and definitive results were obtained for determining the complexity of a semigroup which was the union of groups. Herein we state generalizations, valid for arbitrary finite semigroups, of those previous results. All undefined notation is explained in [2].

We first recall the definition of complexity. See also [2] or [3]. One semigroup, S_1 , is said to *divide* another semigroup, S_2 , if and only if S_1 is a homomorphic image of a subsemigroup $S \leq S_2$. If S is a semigroup, Endo(S) denotes the semigroup of endomorphisms of S under composition. If S_1 and S_2 are semigroups and Y is a homomorphism of S_1 into Endo(S_2), the semidirect product of S_2 by S_1 with connecting homomorphism Y, denoted by $S_2 \times_T S_1$, is the semigroup with elements $S_2 \times S_1$ and product defined by $(s_2, s_1) \cdot (s'_2, s'_1) = (s_2 \cdot Y(s_1)(s'_2), s_1 \cdot s'_1)$.

We can construct new semigroups from old ones by taking semidirect products and then divisors. $S_n \times_{Y_{n-1}} \cdots \times_{Y_2} S_2 \times_{Y_1} S_1$ denotes $(\cdots (S_n \times_{Y_{n-1}} S_{n-1}) \times_{Y_{n-2}} S_{n-2}) \cdots \times_{Y_1} S_1)$ where Y_{n-2} is a homomorphism of S_{n-2} into $\operatorname{Endo}(S_n \times_{Y_{n-1}} S_{n-1})$, etc. We say S is a combinatorial semigroup if and only if the subsemigroups of S which are groups are singletons. The main theorem of [1] (see also [2, Chapter 5]) implies that for each semigroup S there exist semigroups S_n, \cdots, S_1 and connecting homomorphisms Y_{n-1}, \cdots, Y_1 so that

(1.1) $S \text{ divides } S_n \times_{Y_{n-1}} \cdots \times_{Y_1} S_1$

and S_k is either a simple nontrivial group dividing S or S_k is a combinatorial semigroup, for $k = 1, \dots, n$.

 $#_G(S)$, the (group) complexity of S, is by definition the smallest nonnegative integer n such that

¹ This research was sponsored in part by the United States Air Force, Office of Scientific Research, Grant Number AF-AFOSR-68-1477.

² Alfred P. Sloan Research Fellow.