C*-ALGEBRAS OF TRANSLATIONS AND MULTIPLIERS1

BY C. A. BERGER AND L. A. COBURN

Communicated by P. R. Halmos, March 25, 1968

- 1. Introduction. In this note we announce several results about C^* -algebras generated by multiplication and translation operators on L^2 -spaces of compact abelian topological groups. The main result, for which the proof is indicated, is that such algebras contain no nontrivial compact operators. It follows that no irreducible, separable C^* -subalgebras of such an algebra can be Type I [2]. We also point out that there are *-isomorphisms between such C^* -algebras on the circle and related C^* -algebras of weighted shifts.
- 2. Main result. Let G be a compact abelian topological group with normalized Haar measure $d\nu$ and consider the associated complex Banach spaces $L^1(G)$, $L^2(G)$, $L^\infty(G)$ and the corresponding real Banach spaces of real-valued functions $L^1_R(G)$, $L^2_R(G)$, $L^\infty_R(G)$. For a in G, an operator T_a is defined on $L^2(G)$ by

$$(T_a f)(x) = f(xa).$$

For $\phi(x)$ in $L^{\infty}(G)$ we can define an operator M_{ϕ} on $L^{2}(G)$ by

$$(M_{\phi}f)(x) = \phi(x) \cdot f(x).$$

We denote by $\tau(G)$ the C*-algebra generated by all T_a and M_{ϕ} .

LEMMA 1. Suppose that for M>0 and ϕ_n in $L^{\infty}(G)$, $1 \le n \le k$, there are $a_i^{(n)}$ in G and real $c_i^{(n)} \ge 0$ with $1 \le i \le m(n)$, $\sum_{i=1}^{m(n)} c_i^{(n)} = 1$ and

$$\left| \sum_{i=1}^{m(n)} c_i^{(n)} \phi_n(x a_i^{(n)}) \right| < M$$

for almost all x in G. Then there are real $c_j \ge 0$ and a_j in G such that $\sum_{i=1}^{m} c_i = 1$ and

$$\left| \sum_{j=1}^m c_j \phi_n(xa_j) \right| < M$$

for all $1 \le n \le k$ and almost all x.

PROOF. Let j range over all multi-indices $j = (i_1, i_2, \dots, i_k)$ where $1 \le i_n \le m(n)$. Then taking

¹ Research supported by NSF Grants.