ON THE SPACE OF RIEMANNIAN METRICS ${ }^{1}$

BY DAVID G. EBIN ${ }^{2}$
Communicated by S. Smale, March 20, 1968

1. Results. In the present announcement we are concerned with the space of Riemannian metrics on a compact smooth manifold. Let M be such a manifold, $S^{2} T^{*}$ the bundle of symmetric covariant twotensors on M, and $C^{\infty}\left(S^{2} T^{*}\right)$ the smooth sections of this bundle, endowed with the C^{∞} topology. If $\mathfrak{N} \subseteq C^{\infty}\left(S^{2} T^{*}\right)$ is the set of smooth Riemannian metrics on M (those sections which at each point p of M induce a positive definite bilinear form on T_{p}, the tangent space to M), it is well known that \mathfrak{N} is an open convex cone in $C^{\infty}\left(S^{2} T^{*}\right)$. If \mathfrak{D} is the group of diffeomorphisms of M (with the C^{∞} topology), D acts on $C^{\infty}\left(S^{2} T^{*}\right)$ on the right by "pull-back" and \mathfrak{T} is an invariant set under the action. We write $A: D \times C^{\infty}\left(S^{2} T^{*}\right) \rightarrow C^{\infty}\left(S^{2} T^{*}\right)$ and denote $A(\eta, \gamma)$ by $\eta^{*}(\gamma) . A$ is a right action because $(\xi \eta)^{*} \gamma=\eta^{*} \xi^{*}(\gamma)$.

Now restrict to $A: D \times \mathscr{N} \rightarrow \mathscr{M}$. For any $\lambda \in \mathscr{F}$ define I_{λ}, the isotropy group of λ, by $I_{\lambda}=\left\{\eta \in \mathscr{D} \mid \eta^{*}(\lambda)=\lambda\right\}$. For a fixed $\gamma \in \mathfrak{N}$, let O_{γ} be the orbit of \mathfrak{D} through γ.

Main Theorem.
(1) A induces a homeomorphism of D / I_{γ} onto O_{γ} by $\eta I_{\gamma} \rightarrow \eta^{*}(\gamma)$.
(2) There is a subspace S of \mathfrak{N} containing γ which has the following properties:
(a) $A\left(I_{\gamma}, S\right)=S$,
(b) If $\eta \in \mathbb{D}$ and $\eta^{*}(S) \cap S \neq \varnothing$, then $\eta \in I_{\gamma}$,
(c) There exists a neighborhood U of the identity coset in D / I_{γ} and a local cross section $\chi: U \rightarrow D$ such that the map $F: U \times S \rightarrow \mathfrak{M}$ by $F(u, s)=(\chi(u))^{*}(s)$ is a homeomorphism onto a neighborhood of γ.
S is called a slice through γ. From this theorem it follows easily that for any $\lambda \in \mathscr{T}$ which is sufficiently near γ, there exists $\eta \in \mathscr{D}$ such that $I_{\lambda} \subseteq \eta I_{\gamma} \eta^{-1}$.
I_{γ} is by definition the group of isometrics of \mathfrak{M} with respect to the metric γ, so we have shown that this group cannot increase locally. In particular we know that the set \mathcal{G} of metrics which have trivial

[^0]
[^0]: ${ }^{1}$ Most of the results presented here appeared in the author's doctoral dissertation [2].
 ${ }^{2}$ Partially supported by N.S.F. post-doctoral fellowship.

