ON THE SPACE OF RIEMANNIAN METRICS¹

BY DAVID G. EBIN²

Communicated by S. Smale, March 20, 1968

1. Results. In the present announcement we are concerned with the space of Riemannian metrics on a compact smooth manifold. Let M be such a manifold, S^2T^* the bundle of symmetric covariant twotensors on M, and $C^{\infty}(S^2T^*)$ the smooth sections of this bundle, endowed with the C^{∞} topology. If $\mathfrak{M} \subseteq C^{\infty}(S^2T^*)$ is the set of smooth Riemannian metrics on M (those sections which at each point p of Minduce a positive definite bilinear form on T_p , the tangent space to M), it is well known that \mathfrak{M} is an open convex cone in $C^{\infty}(S^2T^*)$. If \mathfrak{D} is the group of diffeomorphisms of M (with the C^{∞} topology), \mathfrak{D} acts on $C^{\infty}(S^2T^*)$ on the right by "pull-back" and \mathfrak{M} is an invariant set under the action. We write $A: \mathfrak{D} \times C^{\infty}(S^2T^*) \rightarrow C^{\infty}(S^2T^*)$ and denote $A(\eta, \gamma)$ by $\eta^*(\gamma)$. A is a right action because $(\xi\eta)^*\gamma = \eta^*\xi^*(\gamma)$.

Now restrict to $A: \mathfrak{D}\times\mathfrak{M}\to\mathfrak{M}$. For any $\lambda\in\mathfrak{M}$ define I_{λ} , the isotropy group of λ , by $I_{\lambda} = \{\eta\in\mathfrak{D} \mid \eta^*(\lambda) = \lambda\}$. For a fixed $\gamma\in\mathfrak{M}$, let O_{γ} be the orbit of \mathfrak{D} through γ .

MAIN THEOREM.

(1) A induces a homeomorphism of \mathfrak{D}/I_{γ} onto O_{γ} by $\eta I_{\gamma} \rightarrow \eta^{*}(\gamma)$.

(2) There is a subspace S of \mathfrak{M} containing γ which has the following properties:

(a) $A(I_{\gamma}, S) = S$,

(b) If $\eta \in \mathfrak{D}$ and $\eta^*(S) \cap S \neq \emptyset$, then $\eta \in I_{\gamma}$,

(c) There exists a neighborhood U of the identity coset in \mathfrak{D}/I_{γ} and a local cross section $\chi: U \to \mathfrak{D}$ such that the map $F: U \times S \to \mathfrak{M}$ by $F(u, s) = (\chi(u))^*(s)$ is a homeomorphism onto a neighborhood of γ .

S is called a slice through γ . From this theorem it follows easily that for any $\lambda \in \mathfrak{M}$ which is sufficiently near γ , there exists $\eta \in \mathfrak{D}$ such that $I_{\lambda} \subseteq \eta I_{\gamma} \eta^{-1}$.

 I_{γ} is by definition the group of isometrics of \mathfrak{M} with respect to the metric γ , so we have shown that this group cannot increase locally. In particular we know that the set \mathfrak{g} of metrics which have trivial

¹ Most of the results presented here appeared in the author's doctoral dissertation [2].

² Partially supported by N.S.F. post-doctoral fellowship.