PERTURBING ASYMPTOTICALLY STABLE DIFFERENTIAL EQUATIONS

BY AARON STRAUSS¹ AND JAMES A. YORKE²

Communicated by W. Wasow, April 22, 1968

Our purpose here is to announce new theorems on the eventual uniform-asymptotic stability (hereafter called EvUAS) of the origin 0 for the ordinary differential equation

(P)
$$x' = f(t, x) + g(t, x),$$
 $(x' = dx/dt)$

given that 0 is EvUAS for the equation

(E)
$$x' = f(t, x),$$

and that f and g satisfy certain conditions. We always assume that f and g are at least continuous from $[0, \infty) \times \mathbb{R}^d$ to \mathbb{R}^d , but we never assume that the solutions of (P) are unique or that the zero function is a solution of (P). In fact EvUAS is a natural generalization of uniform asymptotic stability in which it is not assumed that the zero function is a solution.

Our main result is (definitions follow)

THEOREM A. Let 0 be EvUAS for (E). Then 0 is EvUAS for (P) if

(i) f is Lipschitz and g is diminishing, or

(ii) f is periodic and g is diminishing, or

(iii) f is inner product and g is absolutely diminishing, or

(iv) f is linear and $g = g_1 + g_2$, where g_1 is absolutely diminishing and $g_2 = o(|x|)$.

Let $x(t; t_0, x_0)$ denote a solution of (E) through (t_0, x_0) . We say that 0 is EvUAS for (E) if

$$\lim_{t_0\to\infty; |x_0|\to 0} \left[\sup_{t \ge t_0} \left| x(t; t_0, x_0) \right| \right] = 0$$

and if, for some $\delta_0 > 0$ and some $\alpha_0 \ge 0$,

 $\lim_{t\to\infty} \left[\sup_{t_0\geq \alpha_0; |x_0|<\delta_0} \left| x(t+t_0;t_0,x_0) \right| \right] = 0.$

¹ Department of Mathematics, University of Maryland, College Park, Maryland-Research supported in part by a National Science Foundation Postdoctoral Fellowship and in part by NSF grants GP-4921 and GP-6167.

^a Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, Maryland. Research supported in part by NSF grants GP-6114 and GP-7846.